

1 Introduction

GROUPS

A group (loosely) is a set G together with a "rule" or binary operation that takes $g, k \in G$ and produces a new element $gh \in G$ satisfying certain axioms

Examples of Groups

1) The group of rotational symmetries of regular tetrahedron.

2) The n-stranded braid group

Elements: n-stranded braid

Two braids are the same if one can be deformed into the other without cutting

slide
$$\leftarrow$$
 $=$ \uparrow \neq \downarrow

The operation : stick one on top of the other

s.t

Definition of a group

Definition, Group
A group is a set G with binary operation

$$(g,h) \mapsto gh$$

such that
(1) Closure
 $gh \in G$ is uniquely determined by g,h
 $\forall g \in G, \exists g' \in G s.t$
(2) Associativity
 $gg' = g'g = 1_G$
 $g(hk) = (gh)k \quad \forall g,h,k \in G$
(3) Existence of Identity
 $\exists a 1_G \in G$ such that
 $1_Gg = g1_G = g \quad \forall g \in G$

REVIEW OF GROUP THEORY

Symmetric group Sn

Let X be a non-empty set $X \neq 0$ (often $X = [n] = \{1, ..., n\}, n \in \mathbb{N}$)

We write I_X for the identity map $I_X: X \rightarrow X$. If X = [n], we write I_n for I_{En3}

Definition, Symmetry

- Let X be a set. A bijection $\sigma: X \rightarrow X$ is called a symmetry
- We denote by S_X the set of all bijections from X to X.

$$S_{X} = \{ \sigma : \sigma \text{ a symmetry of } X \}$$

If X = [n], we write S_n for S_{n}

The pair (S_X, o) is a group, the symmetric group on X

Cycle Notation

Definition, Cycle
A cycle in Jn. (of length
$$m \ge 2$$
)
 $d = (a_1, ..., a_m)$
where $a_1, a_2, ..., a_m \in \{1, ..., n\}$ and $a_i \ne a_j$ for $i \ne j$
It is the bijection, defined by
 $d(a_1) = a_2$ $d(a_2) = a_3$,, $d(a_{m-1}) = a_m$, $d(a_m) = a_1$
and
 $d(x) = x$ $\forall x \in \{1, ..., n\} \setminus \{a_1, ..., a_m\}$ fixes other elements

So

$$\sigma = (a_1 \ a_2 \cdots a_n) \text{ is } \qquad a_1 \ a_2 \ a_3 \ a_3 \ a_4 \ a_3 \ a_4 \ a_5 \ a_$$

Then
$$G = \{I_G, r, r^2, s, t, u\}$$

Symmetries are fins \implies compositions are right to left
Eg:
 $sr = v$
 $sr = v$

$$H = \{I_G, r, r^T\}$$
, then this set is self contained group of it's

own

H≤G

$$\frac{1}{16} r r^{2} s t u$$

$$\frac{1}{16} 16 r r^{2} s t u$$

$$\frac{1}{16} r r^{2} s t u$$

$$\frac{1}{16} r r^{2} r^{2} 16 r t$$

$$\frac{1}{16} r r^{2} r^{2} r^{2} 16 r t$$

$$\frac{1}{16} r r^{2} r^{2}$$

Cosets

Definition, Left Coset

Let G be a group,
$$H \leq G$$
 and $a \in G$

The left coset with coset leader a is

 $aH = \{ah: h \in H\}$

Note:

So H is a left coset

'a' is called coset leader in a H

Proposition,

 $sH=tH \iff t^{-1}s \in H$

<u>Proof</u>:

Observe $SH = tH \iff t^{-1}SH = t^{-1}tH = H$ $\iff t^{-1}SEH$

Order of geG

Let G be a group. For $a \in G$, $n \in \mathbb{N}$, we have $a^{\circ} = e$, $a^{n} = a \cdots a$ (n terms) $a^{-n} = (\overline{a}^{\circ})^{n} = (a^{\circ})^{-1}$

Also $ee = e \implies e^{-1} = e$, we have

$$e^{0} = e^{-1}$$
; $e^{n} = e^{-1} e^{-1} = e^{-1}$

i.e. $e^2 = e \quad \forall z \in \mathbb{Z}$

Consider the list a EG

$$a(=a'), a^{2}, a^{3}, ...$$

so either atleast one $a^{2} = e$ or no $a^{2} = e$

Definition, order of element a EG

Let G be a group. For any
$$a \in G$$

The order of a written o(a) is the least nEN such that

 $a^n = e$ if such nen exists

If no such n exists, then $O(a) = \infty$

Notation: use o(g) or IgI

<u>Example</u>:

$$G = \frac{1}{4} \frac{r}{r} \frac{r^2}{r^2} \qquad \frac{1}{2} \frac{3}{2} \frac{3}{2}$$
 orders

Example: in Sn

$$\sigma = (1 2 3 4) =$$

σ = 4

Definition Disjoint Cycles 2 cycles are disjoint if they have no elements in Common (a1....am) and (b1....bK) are disjoint if

$$\{a_1, \dots, a_m\} \cap \{b_1, \dots, b_k\} = \emptyset$$

Proposition

Disjoint cycles commute i.e.
$$\alpha$$
, $\beta \in S_n$ are disjoint cycles then,

Proposition

$$d = \Upsilon_1 \Upsilon_2 \cdots \Upsilon_n$$

are disjoint. Suppose the length of
$$\gamma_i$$
 is l_i for $1 \le i \le m$. Then,

Example: Possible orders of elements of Sio

$$\frac{1}{2} \frac{1}{4} \frac{2}{12} \frac{1}{12} \frac{1$$

(A) If
$$\lim_{x \to 1} \ln \left[x_{1} + x_{2} + \cdots + n_{x}^{2} \right] = p^{d}$$
 where p prime then atleast one n; p^{d}
 $\implies if p^{d} \ge 10$, then \mathcal{X} no $\sigma \in S_{10}$ with $|\sigma| = p^{d}$
This rules out orders 11, 13, 16, 17 and 19 (anong orders blu 10 and 20)
(B) If $\lim_{x \to 1} e^{d_{12}} \frac{d_{2}}{d_{2}} \cdots e^{d_{n}}$ with $p_{1} + \cdots + p_{n}$ distinct primes, then to get a σ of this order, we require atleast
 $p_{2}^{d_{1}} + \cdots + p_{n}^{d_{n}}$
distinct numbers
This rules out order 18 as $18 = 2 \cdot 3^{2} \implies nced 2 + 3^{2} = 11 > 10$ numbers.
Hence we are left with
 $\frac{3}{8}$ $\frac{12}{(12, 3)} \frac{1}{(12, 3)} \frac{(12, 3)}{(12, 3)} \frac{(12, 3)}{(12, 3)} \frac{(12, 3)}{(12, 3)} \frac{(12, 3)}{(12, 5)} \frac{($

2. Group Actions

Definition of Group Actions

$$\sigma_{g}(\sigma_{g^{-1}}(x)) = \sigma_{g}(g^{-1}*x)$$

$$= g*(g^{-1}*x)$$

$$= (g g^{-1})*x \quad A = 2$$

5)
$$G = any group$$

 $x = G$ (G will act on itself)
Define $g * x = g x g^{-1} \ll conjugation, action
 $e G = x x = g x g^{-1} \ll conjugation, action$
(heack
(A1): $1_G * x = 1_G x 1_G^{-1} = x$
(A2): $g * (h * x) = g * (h x h^{-1})$
 $= gh x h^{-1} g^{-1}$
 $= (gh) x (gh)^{-1} (gh)^{-1} = h^{-1} g^{-1}$
 $= (gh) * x$
6) Any group G, $X = G$
 $G \cap X$ via $g * x = g x$
 $bith = G$
 $Then G \cap X$ by
 $g * a H := (ga)H$
Mell-defined:
 $a_x H = a_x H \iff a_x^{-1} a, \in H$
 $\iff (ga_x)^{-1} g^{-1} a = H$
 $(A2) g * (h * aH) = g * ((ha)H)$
 $= (g(ha)H) = (gh) * aH$$

An equivalent definition of group action

Recall $S_X = group$ of all bijections $X \rightarrow X$ (symmetric group on set X) If Gacts on X, then define $\theta: G \rightarrow S_X$ by $\Theta(g): X \rightarrow X$ is the map with $\Theta(g)(x) = g * x$ We saw on pg 10-11 that this is a bijection $X \rightarrow X$ The map O(gh) is $\Theta(gh)(x) = (gh) * x$ = g*(h*x) = g*(O(h)x) $= \Theta(g)(\Theta(h)_{X})$ i.e. O(gh) the same map as O(g)O(h) composition. ⇒ 0 is a homomorphism The converse is also true, if $\Theta: G \rightarrow S_X$ is a homomorphism, then $g * x = \Theta(g)(x)$ is an action. This leads to the following defn Definition

Let G be a group and X be a set.
Say G acts on X
$$\iff$$
 3 a homomorphism $0:G \longrightarrow S_X$

Orbits

Schematic

Notation: Write gx for g * xSo we have (A1) $1_{Gx} = x \quad \forall x \in X$ (A2) (gh)x = g(hx)Definition Orbits Let $G \cap X$. Consider $x \in X$. The orbit of x denoted G * x or $Orb_{G}(x)$ is $G * x = \{g * x \mid g \in G\} \subseteq X$

> hx g^3x ; points... g^3x ;

Examples of orbits 1) Z4 Q Cube : action by rotation around fixed axis

In fact this is (almost always) true for generic points on the cube

|Orbit|=4

Exceptions: 2 pts where axis merges at top and bottom, lorbitl=1

2) Z (] R

n *r = n +r n eZ, reR

$$\frac{1}{3^{n}} + \frac{1}{5^{n}} + \frac{1}{5^{n}} + \frac{1}{6} + \frac{1}{6^{n}} + \frac{1}$$

 $Orb_{Z}(\pi) = \{\pi + n \mid n \in \mathbb{Z}\}$ Properties of orbits

Lemma

$$G \cap X$$
.
(i) $x \in G * x \quad \forall x \in X$
(ii) $y \in G * x \implies G * y = G * x$
(iii) $y \notin G * x \implies G * x \cap G * y = \phi$

<u>Proof:</u>

(i)
$$1_{G} * x \implies x \in G * x$$

(ii) $y \in G * x \implies y = gx$ for some $g \in G$
If $z \in G * y \implies z = g'y$ for some $g' \in G$
 $\implies z = g' * (g * x)$
 $\implies z = (g'g) * x$
 $\implies z \in G * x$
If $z \in G * x \implies z = g' * x$ for some $g' \in G$
Now $y = g * x \implies g' y = g' (g x) = (g'g) x = I_{G} x = x$
Thus $z = g''(g'y) = (g'g') y \implies z \in G * y$
 $\implies G * y = G * y$
Hence $G * x = G * y$

(iii) Suppose
$$z \in G * x \cap G * y \Longrightarrow z = g * x = h * y$$
 for some $g,h \in G$
 $\implies y = (h'g) * x$
 $\implies y \in G * x$ (contrapositive proven)

Note:

"Being in same orbit" is an equivalence relation

Moral: every element of X is contained in precisely one orbit, i.e. orbits partition X

Example:

Example: If
$$G = X$$
 and action,
 $g * x = g x g^{-1}$
The orbits are conjugacy classes in G
 $G * x = \{g x g^{-1} : g \in G\}$
Example:
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \leq S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e, (12)\} \otimes S_4 \cap \{1, 2, 3, 4\}$
 $G = \{e$

gx=y

Example: $G = S_n \cap \{1, 2, ..., n\} = X$

Finding orbit of 1: V KEX, let (1 K)ESn

Then $(1,k) \neq 1 = k \implies k \in \text{ orbit of } 1$

⇒ G*1=X

 \Rightarrow action is transitive

Stabilizers

Definition Stabilizer

GQX, xeX.

The stabilizer of x is

Note: When G acts on X:

Example: Z4 Q Cube: action by rotation around fixed axis

Example: In example pg17
Stab_q(3) = Stab_q(4) = G
Stab_q(1) = Stab_q(2) = {e}?
Also have
Stab_y(1) = {e, (23), (24), (34), (234), (243) ?
$$\cong$$
 S₃
Stab_y(1) = {e, (13), ...} ? \cong S₃
Lemma
GQX, xeX
G_X ≤ G
Proof:
(1): 1_G * x = x \Longrightarrow 1_G ∈ G_x \Rightarrow G_x ‡ Ø
(1): 1_G * x = x \Longrightarrow 1_G ∈ G_x, then (gh)*x = g*(h*x) (since h ∈ G_x)
 $=$ g*x
 $=$ x since g∈ G_x
 \Rightarrow gh∈ G_x
(3) Let g∈ G_x \Rightarrow x=g*x
 \Rightarrow g¹ * x = x
 \Rightarrow g¹ e G_x
(1) = S₄ ∩ {1, 2, 3, 4} = X
 \Rightarrow g¹ ∈ G_x
Examples of Stabilizers
1) G = S₄ ∩ {1, 2, 3, 4} = X
G₂ = { 0 ∈ S₄ | 6(2) = 2}
 $=$ {I_G, (13) (1+), (34), (13+), (143)} = S_y for Y = {1,3,4}?

Orbit of 1 = {1, 2, 3, 4}

Stabilizer = $\{e, (23), \dots, (243)\} \cong S_3$

Theorem. Orbit - Stabilizer Theorem.
GOX and x
$$\in X$$
. The map
 $G'(\overline{q_x} \longrightarrow G * x_{2})$
 $f' = G + x_{2} + G_{x} + G_{x}$

Size of an orbit |G*x divides |G|.

|G *x|||G|

<u>Warmup</u>:

$$G = 25 \implies$$
 orbits of size 1, 5 or 25

X is partitioned by orbits

All ways to partition a set of size 36 into pieces of sizes 1, 5, 25 involve atleast one piece of size 1

xeX has orbit of size 1 => g*x=x VgeG

 \Rightarrow x is a fixed point

Counting orbits

- 2 extreme cases
 - 1) Action is trivial ⇒ g*x=x ∀g∈G x∈X

2) There is one orbit: the action of G is transitive on X

i.e. Vx,geX. IgeG with y=g*x

Sna {1, ..., ng is transitive

Theorem (Cauchy)

Then \exists an element of order $p \in G$ (hence also a subgroup of size p (cyclic))

<u> Proof</u>:

There are G choices for
$$x_1$$
, G choices for x_2 , \cdots G choices for x_{p-1}

-1

Then

$$x_1 \cdots x_p = 1_q \Longrightarrow x_p = (x_1 \cdots x_{p-1})$$

Can choose x1;...,xp-1 freely as long as

 $x_{p} = \left(x_{1} \cdots x_{p-1}\right)^{-1}$

$$\Rightarrow$$
 |X| = |G|^r which is divisible by p because |G| is

 $p||G| \Longrightarrow p||X|$

Let
$$\mathbb{Z}_{p} \cap X$$

 $\mathbb{Z}_{p} = \{0, 1, \dots, p-1\}$ with $t \mod p$
 $\mathbb{Z}_{p} \cap X$ by $m_{x}(x_{1}, \dots, x_{p}) := (x_{m+1}, \dots, x_{p}, x_{1}, \dots, x_{m})$, $m \in \mathbb{Z}_{p}$
Let \mathbb{Z}_{p} act on X by "cycling" toples
 $(x_{p} - x_{1})$ $m \in \mathbb{Z}_{p}$ volates \mathbb{Z}_{p} acts by
 $(x_{p} - x_{1})$ $m \in \mathbb{Z}_{p}$ volates \mathbb{Z}_{p} acts by
Then by corollary $1 \Rightarrow$ each orbit in X has size 1 or p
Have $(1_{q}, \dots, 1_{q}) \in X$ and $m_{x}(1_{q}, \dots, 1_{q}) \in (1_{q}, \dots, 1_{q})$ $Y_{m} \in \mathbb{Z}_{p}$
 \Rightarrow orbit of $(1_{q}, \dots, 1_{q})$ has size 1
Suppose all other orbits have size p . Then $|X| = \sum$ sizes of orbits (orbits partition, X
 $= 1 + Kp$ all other orbits
 $p = |X| \equiv 1 \mod p$, x_{1} since $p = |X|$
 $contradiction $\Rightarrow \exists$ another orbit of size 1, i.e.
 $(x_{1,\dots,x_{p}}) \neq (1_{q}, \dots, 1_{q}) \in X$ where orbit is size 1
 $\Rightarrow m_{x}(x_{1,\dots,x_{p}}) = (x_{2,\dots,x_{p}})$ Y_{m}
 $(x_{1,\dots,x_{p}) = (x_{2,\dots,x_{p}})$ Y_{m}
 $f = (x_{1,\dots,x_{p}) = (x_{2,\dots,x_{p}})$ Y_{m}
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}})$ Y_{m}
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p})}$ Y_{m}
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p})}$ Y_{m}
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p})$ Y_{m}
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p})$ Y_{m}
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p})$
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p})$
 $f = (x_{2,\dots,x_{p}) = (x_{2,\dots,x_{p$$

$As x \neq 1_G \Longrightarrow o(x) = p$

Hence $H = \{x_1, x_2^2, \dots, x_r^{p_1}, x_r^p = 1_G^q \} \leq G$ of size p exists

3. How to Count

Example: Vertices of a square

square and we can color R B

₽

<u>Question</u>: How many different squares?? What if we are allowed to rotate? <u>Answer</u>: |X|=2⁴=16

- X={all possible colored squares}
- $G = \{ 1_G, r, r^2, r^3 \}$ group of rotations

Υ¥

GQX in "the obvious way"

 \rightarrow count orbits

orbit of size 1 stabilizer size 4

two orbits of size 4, stabilizer of size 1

orbit of size 2, stabilizer of size $2(=\{1_G, \Im \pi \})$

orbit of size 4

~ get orbits of sizes 1+1+4+4+4+2=16

We get 6 orbits in total

Fix

Definition

GAX

 $Fix(g) = \{x \in X \mid g \neq x = x\} \leq X$

Burnside Thm

Example: Let $q \in \mathbb{Z}^{>0}$. How many ways can you color the faces of using q colors Naive attempt : q choices for each face \Longrightarrow q⁴ colored tetrahedra problem, are really the same, eventhough counted twice <u>Attempt #2</u>: G = rotational symmetries of X= ? set of all possible painted tetrahedra? GQX with a rotation sending a painted tetrahedron to its image under rotation Count # orbits (i) $|Fix(1_G)| = |x| = q^4 = naive answer$ (ii) g = top 3 must be same color - q possibilities O.R.B.G bottom - anything - 2 possibilities $\Rightarrow q^2$ possible fixed tetrahedra Similarly for other $\frac{1}{3}$ turns and there are 4 $\frac{1}{3}$ turns \Longrightarrow 4xq (iii) g = 2/3 votation = 1/3 votation in opposite direction $\Rightarrow q^2$ fixed here as well 4 $\frac{2}{3}$ rotations $\Rightarrow 4 \times q^2$

4. Sylow Theory

<u>Recall</u>: Lagrange's Theorem

- (1) Theorem Lagrange's Theorem
 - Let G be finite group and H≤G. Then, the order of H divides order of G

HIIGI

Moreover

<u>|G|</u> = [G:H] |H|

(2)Converse of Lagrange's Thm not true. if m. I.G.I then G has a subgroup of order m is NOT true e.q. 1) G = rotations of ⇒ |G|=12 with divisors 1 2 6 12 3 {1₆} 1/2 IGI NONE 9 1/3 . 2/3 1_G 1 2) G = S5 , symmetric group **G** = 5! = 120 So that 15 G but NOT subgroup of order 15 (3) But (♥) we do have a partial converse to Lagrange: Cauchy's Thm. p prime, if pIIGI, then G has prime subgroup of order p

Sylow p-subgroup

Definition Sylow p-subgroup G be a finite group with G = p²·m where p prime and gcd(p,m)=1. Then subgroup H ≤ G with H = pⁿ

is called a Sylow p-subgroup of G

Example:

Suppose $|G| = 2^3 5^2 13$

then, a subgroup of order

2³ is a Sylow 2-subgroup

5² is a Sylow 5-subgroup

13 is a Sylow 13-subgroup

Sylow 1st Theorem

Theorem Sylow's 1st Theorem

If G has order $p^n m$ with p prime and gcd(p,m)=1, then

G has a Sylow p-subgroup

<u>Proof</u>:

Let
$$G(JX)$$

X = set of all subsets of G having p^N elements.

Then X has
$$\begin{pmatrix} |G| \\ p^n \end{pmatrix} = \begin{pmatrix} p^n \\ p^n \end{pmatrix}$$

"Ex:" p does not divide (pm,)

$$\Rightarrow p \text{ does not divide } |x|$$
Also: $X = \text{disjoint anion, of orbits}$

$$\Rightarrow |X| = \sum \text{ size of orbits.}$$
Conclusion: $\exists \text{ an orbit shose size is NOT divisible by p}$
Goll this orbit $A \in X$
By orbit-stabilizer theorem, then says
$$p^n = |G| = |G + A| |G_A|$$

$$p^n ||G| \Rightarrow p^n ||G + A| |G_A|$$

$$p^n ||G| \Rightarrow p^n ||G + A| |G_A|$$

$$p^n = |G_A| |G_A| = p^n$$

$$p^n \leq |G_A|$$
Now let $g \in G_A$ and $a \in A$. Then,
$$gA = A$$
and in, particular ga \in A. Thus
$$G_A \cong A$$
Finally
$$|G_A| = |G_A| \leq |A| = p^n$$
(e)
By (e) and (ee)
$$|G_A| = p^n$$

$$g(e) = a \text{ subgroup.}$$
Example: $G = retations of$

$$example: G = retations of$$

$$example: G = retations of$$

$$example: G = retations of$$

$$p^n = |G| = 2^n 3$$

$$\Rightarrow S_5$$
 has subgroup of order $2^3 = 8, 3, 5$

Note: S5 does NOT have a subgroup of order 3.5 (prove !)

Sylow 2nd Theorem

$$P_2 = g P_1 g$$

Sylow 3rd Theorem

Proof:

From Exercise K,=H, ⇒ stabilizer of H, is just H, ⇒ orbił contains 1 element For $j \neq 1$ then $K_j = H_i \cap H_j$ is a proper subgroup of H_i where $|H_i| = p^n$ Thus |kj|=p^k for some k<n By orbit-stabilizer theorem $p^{A} = |H_{1}| = |K_{1}||H_{1} + |H_{2}|$ we get $p^{n} = p^{k} | H_{1} * H_{j} |$ with k < n, so ρ | Η, ***** Ηj As X is the disjoint union of orbits, we have Np = # Sylow p-subgroups = |X| $= \sum$ sizes of the orbits = 1 + Mp = 1 (mod p) orbit of all other orbits have H. size p (ii) Use a group action Let GAX X = { H1, H2, ..., Hnp } = { set of Sylow-p-subgroups } by : g*H = gHg⁻¹ Makes sense ? (show action) Firstly is gHg' a Sylow p-subgroup, i.e. another element of X

gHg⁻¹=H

Proof: Prove later

Observation: Suppose the number Np of Sylow p-subgroups is equal to one.

Example:

Suppose G has order 175.

$$|G| = 5^{2} \times 7. \text{ Consider } N_{5} = \# \text{ of } \text{Sylow } 5 - \text{subgroups.}$$

$$|Sylow \# 3(ii) \implies N_{5} \mid 7$$

$$\implies N_{5} = 1 \text{ or } 7$$

$$|Sylow \# 3(i) \implies N_{5} \equiv 1 \text{ mod } 5$$

$$\implies N_{5} \equiv 1$$

Conclusion: G contains a normal subgroup with $5^2 = 25$ elements.

5. Conjugacy

(*)

Definition

Two elements g1,g2 < G are conjugates iff

Notes:

(1)
$$g_2 = hg_1 h' \Longrightarrow h'g_2 h = g_1$$

 $\Longrightarrow (h') g_2 (h')'$
 $\Longrightarrow kg_2 k' = g_1 \quad \text{for } k \in G$

(2) Intuitively conjugate elements have similar algebraic properties.

Example: G = rotations of

Example:

$$g_{2} = hg_{1}h^{'} \text{ and } g_{1}^{n} = 1_{G}$$

$$g_{2}^{n} = (hg_{1}h^{'})^{n}$$

$$= hg_{1}h^{'}hg_{1}h^{'} \cdots hg_{1}h^{'} (n \text{ times})$$

$$= hg_{1}^{n}h^{'}$$

$$= hh^{'} = 1_{G}$$

Similarly
$$g_1 = h'g_2h$$
 so that $g_2^n = 1_q \implies g_1^n = 1_q$
 \implies thus g_1 and g_2 have same order.

<u>Example</u>:

G = GL(n, R)

Then in linear algebra, an AEG is diagonalizable when

A=MDM⁻¹

for some M and D diagonal.

- A and D are conjugates (similar matrices)
- · A and D represent the same linear map with different coordinates
- · They have same eigenvalue, trace and determinant

Conjugacy class

Definition, Conjugacy class

the set of all conjugates of g

Centralizer

Definition Centralizer The centraliser of g is

$$C_{G}(g) = \{h \in G \mid hgh' = g\}$$

Example: GQG by conjugacy

Hence

conjugacy classes =
$$\frac{1}{|G|} \sum_{h \in G} |C_G(h)|$$
 Burnside thm

Example: G is Abelian (i.e. gh=hg ∀g,h)

$$\frac{1}{2} = \int_{0}^{1} \frac{1}{g} = g$$

Then

$$h 1_{G} h' = 1_{G} \Longrightarrow 1_{G}^{G} = \{1_{G}\}$$

Conjugacy in Sn

Definition Cycle Structure

The cycle structure of a desn is a formal expression, of the form,

 $n_1 + n_2 + \cdots + n_k$

where $n_i \in \mathbb{Z}^{>0}$ and $n_1 \ge n_2 \ge \cdots \ge n_k$ where if σ is written as a product of disjoint cycles, then there are cycles of length $n_1, n_2, \cdots n_k$ including cycles of length 1

<u>Example</u> :

1)
$$\sigma = (1 \ 2 \ 3)(4 \ 5) \in S_5$$
 has cycle structure 3+2

2) σ=(123)(45) ∈ Sz has cycle structure 3+2+1+1

3) σ = (1 2 3 5)(2 4 3) = (1 2 4 3) has cycle structure 4+1

Theorem

Two elements of Sn are conjugate

they have same cycle structure

Proof:

Consider

a cycle of o. Then,

 $p(a_1 a_2 \cdots a_n) p' = (p(a_1) p(a_2) \cdots p(a_n))$ (*)

$$\begin{array}{c} \underline{BHS:} \ \mu(a_i) \longmapsto \mu(a_{i+1}) \\ \underline{LHS:} \ \mu(a_i) \longmapsto a_i \longmapsto \sigma_{i+1} \stackrel{\longrightarrow}{\longrightarrow} \mu(a_{i+1}) \\ \hline Thus have expression, above \\ \hline Now write \ \sigma = \sigma_i \sigma_i \cdots \sigma_f \ a \ product \ of \ disjoint \ cycles \\ \hline T = \mu \sigma_f \mu^{-1} \ \mu \sigma_i \mu^{-1} \ \mu \sigma_f \mu^{-1} \ \dots \ \rho \sigma_f \mu^{-1} \\ By \ (*) \ \mu \sigma_i \mu^{-1} \ is \ a \ cycle \ of \ same \ cycle \ structure \\ \hline By \ (*) \ \mu \sigma_i \mu^{-1} \ is \ a \ cycle \ of \ same \ cycle \ structure \\ \hline By \ (*) \ \mu \sigma_i \mu^{-1} \ have \ same \ cycle \ structure \\ \hline (=): \ Suppose \ \sigma_i \ T \ have \ same \ cycle \ structure \\ \hline n_i + \cdots + n_k \\ \hline \sigma = (a_n \ \dots \ a_{i,n}) \ \cdots \ (b_{e_1} \ \dots \ a_{e_{i,n}}) \\ \hline Then \ \mu \ is \ a \ bijection \ f \ s_{i,n} \ with \\ \hline a_{i,j} \ orgonup \ a_{i,j+1} \\ \hline have \ b_{i,j+1} \ b_{i,j+1} \\ \hline Fsample: \ conjugacy \ in \ J_n \ d_n \ d_{i,j+1} \\ \hline Fsample: \ conjugacy \ in \ J_n \ d_{i,j+1} \ d_{i,j+1} \\ \hline fsample: \ conjugacy \ in \ J_n \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \\ \hline Fsample: \ conjugacy \ in \ J_n \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j+1} \ d_{i,j} \ d_{i,j} \ d_{i,j+1} \ d_{i,j} \ d_{i,j} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j} \ d_{i,j+1} \ d_{i,j} \ d$$

Every o ESn is conjugate to one of these seven.

Example: how many elements of S6 are conjugate to (12)(45)?

Answer: T is conjugate to
$$\sigma$$
= (12)(45) exactly when t= (ab)(cd) for {a,b,c,d} disfinct
in {1,2,..., 6}

Choose a, b, c, d in
$$\begin{pmatrix} 6 \\ 4 \end{pmatrix}$$
 ways. Place them: $(--)(--)$
in fact $(a -)(--)$

$$\Rightarrow 3\begin{pmatrix} 6\\ 4 \end{pmatrix} = 45$$

Counting conjugate elements

Make sn act on itself by conjugation; sn Q sn by

Then orbits = conjugacy classes

$$n! = |S_n| = |\sigma^{S_n}| |C_{S_n}(\sigma)|$$

s conjugates all μ s.t of σ μσμ'=σ

$$\implies \text{# we want} = |\sigma^{s_n}| = \underline{n!} \\ |C_{c}(\sigma)| \leftarrow \text{ count this}$$

Nrite σ as a product of disjoint cycles s.t there are mr cycles of length r

Then

$$\sigma = \cdots (a_{11} \cdots a_{1Y}) \cdots (a_{m_{r}1} \cdots a_{m_{Y}r}) \cdots (4)$$

and

$$\mu\sigma\mu'=\cdots(\mu(a_{11})\cdots\mu(a_{1r}))\cdots(\mu(a_{nr})\cdots\mu(a_{nr}))\cdots\cdots(r(a_{nr})\cdots\mu(a_{nr}))\cdots(rr)$$

We want to count the is sit (**) = (*) i.e. uon'=o

Need $(n(a_n) \cdots n(a_n))$ to be one of the (**)

There are m_r choices for which one. Similarly $(\mu(a_{2i})\cdots\mu(a_{2r}))$ has $m_r - 1$ choices for matching np_1, \cdots, \dots $\implies m_r!$ ways the (**) can be matched with (*)

Suppose $(n(a_{11})\cdots n(a_{1r}))$ is matched with $(a_{11}\cdots a_{1r})$, then either

$$\mu(a_{i1}) = a_{i1} \text{ or } \mu(a_{i1}) = a_{i2} \cdots \mu(a_{il}) = a_{il}$$

i.e. v possibilities for m(a,,)

As soon as this choice is made, the possibilities for the remaining m(aij) are completely determined.

This is the case for each r-cycle

$$(\mu(a_{i_1}) \cdot \mu(a_{i_2}))$$

of non' giving my!r" ways of the r-cycles of non' can equal the r-cycles of o.

Conclusion: there are $m_r! r^{m_r}$ ways the r-cycles in (**) are equal to the rcycles in (*)

Let r vary to give

$$\prod m_{\gamma}! \gamma^{m_{\gamma}} \mu' s s t \mu \sigma n' = \sigma$$

Note If $m_r = 0$ then $m_r = 0$

$$M_{Y}' Y = 0'Y' = 2$$

Example: $\sigma = (12)(45) \in S_6$

$$\implies$$
 m₁=2, m₂=2

 $\ddagger \text{ conjugates of } = \frac{6!}{m_1! 1^{m_1} \times m_2! 2^{m_2}}$

$$= \frac{6!}{2! 2! 2^2} = 45$$

6. Counting-Conjugacy

Recal	l if	GC	X.	. th	nen	b	y E	Bur	nsi	de	th	eore	m															
						v .	ر 	- 1	•				v															
		#(orb	its	= -	1	2		Fix	(g))					_	(*))			_							
						GI	ge	G		•											_							_
<u> </u>			1.1		- V		11		r.	.(.)																		-
Juppo	sen	OW T	hat	X	έχ	N I	th	XE	: Fix	(19)	S	0																-
				a #	n -		- 7																					+
				уx	Λ-	Яx	- 1																					
Cons	ider																											
		(h	gh	')(hx)=	ha	2(2) =	hx																		
		\ \	U V				J)													_							
i.e.	re l	Fix(g)) =	\Rightarrow	, Yi	k E l	Fix	(h	gh')										_	_							_
<i>r</i>	(••		r.	1.	1	- 1)													_	_							+
Conve	ersela	1 'f	y	eti.	x (\g h	•	, ŀ	е.																			-
		h	٥ĥ	'(") =		_	>	~k	-17	.)	= [u												_			
		, ,	gr	١J	1 -	J		-/	y'		"	- ^]															
i.e.	yef	Fix(h	gh	;')	=	≯	Ľ	'(y)ε	Fix	:(q)																
	J		J					J			J	-																
This	give	5																			_							_
	•		c.	1	1	x	⇒h	×	1		.1										_							+
			Fi	X ((g /	,		1:	x (h	gh	1										_							-
						y r	→h	y																				
								,																				
maps	wh	ich	are	M	ntu	a	inv	ers	es	=	> b	iject	tion	5														
1					, I							J																
i.e	2.		Fi;	(g) :	=	Fix	(he	gh')										_	_							_
TI .		- 1	1	· ·	. 1		1		1.	11						. (4	<u>۱</u>					-						-
Inus	conj	ngat	ie e	lem	ent	S CI	ont	¥101	ate	ŢŊ	2 50	zme	701	nman	ат	▲) 0	/				_							
Thus																												
1 100		_														_ ۲												
											61		/	.														
			#	01	biłs	5 =			<u>)</u>		3°1	l Fiz	x(g)			Po	lya	En	ume	rat	ion	ډ)	* *)				
							6	τ ⁰ ζ	ilass:	es	Ĵ							•										-
																									_			-
																									_			
											Con	inga	cy	class														
											o.	f 9	1															
Rema	yk:	G =	Ss																									
						1	~	1		ſ															1 1			_
	G	- 21	= [2	20	b	ut	G	ha	s ()nlu	H	t CC	nji	ngac	y cle	asses	(01	11es	pon	ling	ło	th	e pe	ermu	tati	ons	of :	b .
1 1 1	- I -		1									- I -		· ▼ ``	-		1	1 L		_ _		1	L L		1	(I	- 1	

⇒ (*) has 120 terms, (**) has 7

Extended Example

A graph is a set of nodes/vertices connected by edges.

Convention: We won't allow multiple edges between vertices or loops

2 graphs Γ_1 and Γ_2 are isomorphic if \exists a bijection f from vertices of Γ_1 to Γ_2 s.t

u and v are joined by an edge in $\Gamma_1 \iff f(u)$ and f(v) are joined by an edge in Γ_2

graphs on 5-vertices $\leftarrow 1^{-1} \rightarrow$ colourings of edges of ks with 0,1

Then Γ_1 isomorphic to $\Gamma_2 \iff$ corresponding colorings of K_5 are isomorphic Now let $S_5 \cap X$

Using Polya enumeration, list conjugacy classes in S5

	Table #1 (conjugacy	in Ss)
Partition, of 5	example o	$ g^{G} = \frac{n!}{\prod m_{r}!} r^{m_{v}}$
1+1+1+1+1	1 _{sa}	1
2+1+1+1	(12)	10
2+2+1	(12)(3 q)	15
3+1+1	(123)	20
3+2	(123)(45)	20
4+1	(1234)	30
5	(12345)	24

<u>Reality check</u>: GQG by conjugation,

1 4 1 1 1 1

7. Subgroup Lattice

Definition, Subgroup Lattice

Let G be any group.

Then the subgroup lattice of G written Z(G) is the set of all subgroups of G s.t

 H_1 and $H_2 \leq G$ with $H_1 \leq H_2$, then in $\mathcal{I}(G)$ write:

 H_2

H,

 H_2

G

Schematic

Example: G = Zn = {0, 1, 2, ..., n-1} with + mod n

 $\{1_{G}\}$

Then $H = \{1_G\} = \{0\}$ a subgroup

Η,

- If H≠{0} then let O≠ k∈H be smallest
 - \Rightarrow k, k+k, k+k+k, \cdots \in H
 - \implies K, 2k, 3k, $\cdots \in$ H
 - \Rightarrow {0, k, 2k, ...} \subseteq H.

Now let hEH and divide with remainder

h=mk+r O≤r<k

⇒ r=h-mk∈H by closure since h∈H, mk∈H

⇒ reH

Since k smallest and $0 \le r < k \implies r = 0 \implies h = mk$

Thus $H = \{0, k, 2k, \dots (s-1)k\}$ — (*)

with sk=n.

Conclusion: If H < Zn, then H looks like (*) with k dividing n, i.e. k n

Now let H be an arbitrary subgroup.

(1) Suppose r∈H so that {1_G, r, r²3 ⊆ H

⇒ 3 ≤ | H | ≤ 6

$$\implies$$
 H = { 1_G, Y, Y² } or G

(2) Suppose seH and r&H. Then

 $\{1_{G},s\} \in H \implies |H| = 2,3,6$

If |H|=2, then $H=\{1_G,s\}$ and |H|=6, then H=G

If |H|=3, then the element of H that isn't 1_G or s cannot be r (hence r^2)

i.e. H={1G, S, YS} or H={1G, S, T23.

If first, then $rs.s \in H \implies rs^2 = r \in H$

Similarly not second

