


1 Introduction
GROUPS

Agrouplooselyisset Gtogetherwitha"rule"orbinaryoperation thateis

Examples of Groups
1) The group of rotational symmetries of regular tetrahedron

-------- 34

symmetries are
·

"34

axis I turto ·

--------turn
---------

434
⑧

6 more

2 more

& I turn

-- %2 more

"22

Finally do nothin
g.

--

The rule takes the net effect of applying 2 rotations

& I turn
& I turn

⑨ -----------

9 h
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2) The n-stranded braid group
Elements : n-stranded braid

- n = 3
~ fixed ends

can be deformed like plastic and knot around eachtheas

Two braids are the same if one can be deformed into the other without cutting

slide,
The operation : stick one on top of the other

O

..
-

Definition of a group

Definition Group
A group is a set G with binary operation

(g ,
h) , ·gh

such that

(1) Closure (4) Existence of Inverse

ghe G is uniquely determined by gih VgeG , A geG s .
t

(2) Associativity gg = jg = 16

g(hk) = (gh)kV g ,
h

,
keG

(3) Existence of Identity
I a 1qG such that

19 = g1q = 9 VgtG



Example : In braid group

14 = 00-as say
· ⑧

%
①

··
⑧

9 G !!!
g + q

Inverse

·(

·
Notice also

00D

S => the group is infinite
·

op

n-distinct elements

Notation: in a generic group G, write multiplicatively i.
. e.

gh for g ,
heG



REVIEW OF GROUP THEORY

Symmetric groupIn
Let X be a non-empty set X + 0 (often X = [n] = 51, ...., nY ,

neIN)

We write IX for the identity map Ix
: X-X

. If X = [n]
,

we write In for Fin

Definition Symmetry
Let X be a set. A bijection 0 : X-> X is called a symmetry
We denote by Sx the set of all bijections from X to X

.

Sx = 20 : 0 a symmetry of XY

If X= [n)
,

we write Sn for Sins

Notation: The binary operation represented by 'o' is composition of a function

Proposition Symmetric Group
The pair (Sx ,

o) is a group ,
the symmetric group on X

Cycle Notation
Definition Cycle
A cycle in Su (of length m = 2)

x = (a
, . . .,

am)

where a
, az , .... Amed1, ..., n) and difaj for ifj

It is the bijection defined by
< (ai) =azclaz) = as

, ....., dam-l = am
,

slam) = a,

and
x(x) = e Vxed1

,....,
n3 Sa, ...,

amY fixes other elements
MIN

So a
u = (a

= az ... an) is
g
a40- as



Example :

Ho- as l

25= as (120((4

Note : Compose from right to left
e.g. if M = (12)

+u = ( 1 23)(95)(12) = (13)(45)

subgroups
DefinitionSubgroups
Let G be a group.

Let HEG
.

Then H is a subgroup of G denoted HEG if

(i) a , be H = abEH closure

(ii) acH=H closure under inverse

(iii) eH contains identity => H +0

Example :

G = symmetries of

operation:composition of symmetries

Ju
"reflections set , u" rotations v

,
r22

"

= Iq



Then G = [Ig ,
v

,
r2, s

,
t

,
u?

symmetries are fas compositions are right to left

Eg : D

I
contained group of it's own

=> I is a subgroup of G

=> HEG

Looking at multiplication table

1G rus + u

- 116V8S tu
self contained

v r 1 us t

vv 1 v + us

ss + u1a vv

t + uS v2 1G v

nus t v v
=

1G

Table for H

Cosets

Definition Left Coset

Let G be a group , HEG and ac G

The left coset with coset leader a is

aH = Sah : heHY

Note :

eH = Seh : he HY = EheH) = H

So H is a left coset

'a' is called coset leader in alt



Example :

G = Sym

G = 1G vs 7 subgroup H
stu

Consider SH = Es
,

su ,
Su] = Es ,

t
,Y a (left) coset of H in G

G = 1GVs = H

stu SH

tH = St
,
tr

,
tr23 = St

,
u

,
SY = SH

Similarly uH = tH = SH

H= H =
HY same coset can have different coset leaders

Thus only I cosets of H in G, namely
H = rH = v2H and SH = tH = uH
--

different name for same
coset

Definition Index

If HEG then [G : H] is the number of left cosets of H in G

[G : H] is the index of H in G

In example above

H has index 2 in G = [G : H] = 2

Lagrange's Theorem
Theorem Lagrange's Theorem

Let G be finite group and HEG
. Then the order of H divides order of G

H G

Moreover
G = [G : H]
H



Proposition
SH =tHXteH

Proof :

Observe
SH = tH X H=tH = H

#Est
P

Order of geG
Let G be a group .

For aEG, neIN ,
we have

ab= e
,
a = a ...... a In terms

an= (a) " = (an)
+

Also ee = e => e = e
,

we have

e= e ; e=

e
(e)= e" = e

i
. e.

e=eVzt])

Consider the list aG

a)= a)
,
a

,
a

....

so either atleast one ate or no are

Definition order of element at G

Let G be a group. For any aeG

The order of a written o(a) is the least neIN such that

a= e if such new exists

If no such n exists
,
then o(a) =-

Notation: use o(g) or g



Example :

G = 1 rr 133 orders
s + u222

Example : in Sn

0 = (1234) =

0 = 4

Definition Disjoint Cycles
C cycles are disjoint if they have no elements in common

(a, ..... am) and (b, .... by) are disjoint if

Sa ,
.... amY 19b ....... bih = 0

Proposition

Disjoint cycles commute i . e .
d

, BESn are disjoint cycles then
d B = BL

Proposition

Let deSn , <In .

Write

2 = V
, 82 . ... Om

are disjoint. Suppose the length of 2; is 1 for Lim. Then

0(x) = KmEl
, ,

. .

.,
emY

Example : in Su

order of (12) (3 +5) = 6

Example : Possible orders of elements of Si

I

· 1 ...



A If km[nz , nz ...., 43 = pd where p prime then atleast one ni = pd
=> if ps10 , they I no res

, with o = pd
Thisrules out orders 11

,
13

,
16

,
17 and 19 Camong orders blw 10 and 20

B If km =pdm with .. P distinct primes , they to get a E of this order, we

require at least

+... pa
distinct numbers

This rules out order 18 as 18 = 2 .
3 = need 2 + 3 = 1110 numbers

.

Hence we are left with

-12 14 15 20 21

)(4)Sad
Now A rules out 23

,
25

.
27

.
29

B rules out 22
,
24

,
26 , 28

Finally
38

(12) (345)
1678910)

Remarks :

1) g has order1 g = 1

=g = 1
G

2) If g = 1g ,
at most we can say is

olg) n

Cyclic subgroups
Definition

Let G be a group ,
aEG .

We define

(a) = \a2 : z2]



In 't' notation

(a) = 5za : z2)Y

Definition Cyclic Subgroup
i) (a) is the cyclic subgroup generated by a

(ii) a group is cyclic if G = (a) for some aEG. Then we say a generates G

Example :

G =Sym)r
(v) = [r

,
v2

,
v= 1q}

Lemma

For any aeG , we have (a) is a commutative subgroup of G and

(a)) = o(a)

Proof :

It (a) = 0 then a==> i =j

If o(a) = - then if isj and a==> -e contradiction *

so ... aa
,

e , a ,a ... are all distinct => (a) = -

Sincea = a> a= e
,
so if ji to,

we would say O(a)Ejil
Hence if ola) =*

,
(a) = o

If o(a) = new
,
then from remainder lemma

,
(a) = Se

,
a

,
a

, ....,
a7 and e

,
a

,
a

, ...., a "are
distinct

if 0(a) = n
,
(a) = n and (a) = Se

,
a, ...., any

*



2. Group Actions
Definition of Group Actions

Definition Group Actions

Let G be a group ,
X be a set.

say that G acts on XXVGEG ,
XoEX

,
A a uniquely determined

gxxEX
such that

(A1) 1G * x = x ExEX

(A2)gx(h + u) = (gh)* Vg ,
he G

,
xX

S

product in G

Notation : GQX : G acts on X

schematic gh

int -↳
Remark : Group actions as functions
In a group action ,

each action is associated with a bijection

Og : X < X ; Og(a) =

g*

Moreover we have gIEG which gives

Ugt : X (X ; Og(u) =g x

composing

Og(Ogi(x)) = 0g(gxx)
=

g* (g xx)
= (gg *xA2

sion Og is a bijection



=

1g *x

= R Al

i. e .
X gX X is the identity on XY = conclusion Og is a bijection

Similarly XX X

Examples of Group Actions

1) G =Sn

X = 51
,
2

, ..., 44

Define

0xi = d(i)7 image of i under o

ESn eX

checking axioms
(A1) : 1G * i = i

(A2) : c * (0 * i) = c * (0(i)

= c(o(i) = (z0)(i) = (50) * i
Y

defn of product in Sn

Eg : Sp and X = [1
,
2

,
3

,44

0 = (1234)8 * 3 = 4

0 * 3 = 1

2) G = I under +

X = IR gh becomes ntm

Define &ARR by It becomesO

n * x = n + x
(
g' becomes -

1
I

checking axioms
(A1) : 0 + x = x

(A2)(n +m) * x = (n+m) + a

= n + (m+ a) = n + (m* x) = n + (m+x)



N m

-
> X = IR

x x+n

I acts on I by translation

3)G = 2n = 20
,
1

,
2

,
3

, 4 ..... n- 13 a group under I mod n

For n = 4 , 24 = 50
,
1

,
2

,
33

X = Cube
·

2* 1

24bX by
3* U

. · 1* x
⑨

3xy
= y = (xy

= 2 *Y n * x = R"(x)
·

x = 0*x
-24 ecube image of X under R

⑨

-R %4

Eg : 2 xx = R(x)

4) G =GL(2
, 1) = [AEMz(IR) det(A) + 0 ; invertible ?

A group under matrix multiplication.

Identity = (10)=

X = 1 = &(a) : a
,
be IR]
R

Define G & X by A * V = AVER

R

Checking axioms :

(A1) [2 * = = (09)( % ) = (a) =

(A2) A * (B * 1) = A(BX) = (AB) = = (AB)*



5) G =

any group

X = G (G will act on itself

Defineg*U=gug conjugation actiona

Check

(A1) : 1q * x = 1qu1] = x

(A2) :
g * (h+x) = g * (huh)

= ghah'g'
= (gh)x(gh)" (gh)"= h'g
= (gh) * c

6) Any group G
,
X = G

GAX via g *x =gx

bothinGproduct in G

7) G a group and H_G

X = G/H = SaHaeG]

Then GAX by

g
* aHi= (ga)H

well-defined :

acH =acH> aa ,
H

# ag'gaze H
> (ga)gaze H

E (gaz)H = (gaz)H

Checking axioms :

(A1) 1g *H = (1qa)H = aH

(A2) g * (hyaH) =

g * )(ha) +)

= (g)ha)H) = (gh) * at



An equivalent definition of group action
Recall Sx =

group of all bijectionsX X (symmetric group on set X

If G acts on X ,
then define

8 : G < SX

by O(g) : X c X is the map with

o(g)(x) =

g *x

We saw on pg10-11 that this is a bijection X X

The map Olgh) is

o(gh)(x) = (gh) * x

=

g * (h +x)

= g * (0(h)x)

= o(g)(0(h)a)
i.e. Olgh) the same mapasOhposition

=> O is a homomorphism

The converse is also true,

if 8 : G+ Sx is a homomorphism, then g*x = O(g)(x) is an action.

This leads to the following defn

Definition

Let G be a group and X be a set.

say G acts on X ES A a homomorphism O :GSX



Orbits

Notation : Write ga for gxx

So we have

(A1) 1 = a VueX

(A2) (gh)x = g(hu)

Definition Orbits

Let GAX
.

consider neX. The orbit of a denoted Gx or Orbqla) is

G x x = (g xg = G3EX

Schematic

·
Examples of orbits

1) I A Cube : action by rotation around fixed axis

·
2* 1

· 1* x = x
⑨

orbit 3 * x
⑨ · 1* x

⑨

-
⑨

⑨ 84 * x

⑨

-R %4
-R %4

In fact this is(almost always) true for generic points on the cube

Orbit = 4

Exceptions : 2 pts where axis merges at top and bottom, orbit = I



2) AIR

n + V = n+ n =2
,
veRR

;; R

Or(4)= = <4+ un = 2)

Orb (m) = \π +n(n =2)]

Properties of orbits

Lemma

GlX

(i)xG* FaeX

(ii) yeG* => G * y
= G Ax

(iii) y Gen = GxxlGxy =

Proof :

(i) +q * u = xG* x

(ii) yeG *U = y =ga for some geG

If ZeG*y z =gly for some ge G

=> z =g* (g+x)

=> z = (gg)+ a

=> zEG*x

=> Gyy = G * x

If ztG *x = z=g"*C for some ge G

Now y =g* x = gy = g (gx) = (gg)x = Iqu = x

Thus z = g"(gy) = (gg')y = zcG * Y
=> G* y

= G * C

Hence G* = G#Y



(iii) Suppose zG* 1 G * y => Z = g*x = h*y for some g ,
LEG

=> y
= (hg)+

=> yeG*C (contrapositive proven
*

Note :

"Being in same orbit" is an equivalence relation

Moral :
every element of X is contained in precisely one orbit, i.e. orbits partition X

~
Example :

G = 5z1z1 = 1}
·

i

= SeiO/OER]
· 1

. ·

I

Group operation is multiplicationa ①

- i

gidiot,
E a homomorphism (1 ,+) G

O 1 , o Orbit of 0 = 203

Let X= D and GAX by Orbit of 1=Se PERY = unit circle

ei0* z = g0z Orbit of z = reio is Sreikta) : OER3
Z = circle of radius v in K

if z = reil ,
~

ei02 = vei(0+ 6)

·
(

Get one orbit for each veRgo = IRJ

G-



Example : If GFX and action

g *x =gxg
The orbits are conjugacy classes in G

G + a = Sgug : geG3

Example :

G = Se
,
(12)} = S4941 ,

2
,

3
, 43

9 99

· G has 3 orbits
12 3 4
&

G*3G*4
Sy has only 1 orbit

G *1 = G * 2

Transitivity
Definition

G acts on X transitively if I precisely one orbit:

VaeX
,

we have G * x = X
.

Put another way ,
Vo yeX ,

I a ge G s
.
t

gx = y

Example : G =Sn [1 ,
2, ..., n3 = X

Finding orbit of 1 : V KEX
,
let (k) ESu

Arsie washere
Then (1. k) * 1 = 1 => Ke orbit of I

=> G * 1 = X

=> action is transitive



stabilizers

Definition Stabilizer

G & X
,
aeX

.

The stabilizer of a is

Gu = Stab(a) =Egg= G

Note : When G acts on X :

orbits[X 3 GAXstabilizersG

Example :2 A Cube : action by rotation around fixed axis

Guido
Stabilizer of "generic point" fixes pointa

①

=> trivial subgroup [1

0, 1
,
2,3 Gy = 24

↑ stabilizer of one of the points where axis
goes = G



Example : In example pg 17

Stab,(3) = Stab(4) = G

Stab(1) = Stab(2) = Eel

Also have

Stab(1) = de
,
(23)

.
(24)

,
(34)

,
(234)

, 1243)3E

Stab(2)
= de

,
(13), 3ESz

Lemma

GAX
,
xEX

Gx[G

Proof :

(1) : 1q *x = x => 1qGn = Ga+ d

(2) Suppose g . heGu , then (gh) * c =

g * (h*) (since heGal

= g * C

= R since ge fin
=> ghEG,

(3) Let g(Gx= x =

gxx

=> g* x = x

=> ge Gx
#

Examples of Stabilizers

1) G =S41(1 ,
2

,
3

, 44 = X

Gz= [0ES40(2) = 23

= (Ig ,
(13) (14)

, (34) ,
(134) , (143)3 = Sy for Y = 51

,
3
, 43



2) AIR

xl" , n +x = n*x

n < 0 n30 Gu =20%

>

3) GL(2 , IR) AIR

vi > Av = Av

Gv = [ACGL(2 ,
1) : Av = v3 = invertible 2x2 matrices having eigenvector v with eigenvalue 1.

4) GAG by conjugation

g
* x = gag

Then
Ga= &geG gag' = al

=(gtG gx =gx]
= geG that commutes with a

Example :(IR
,
+) acting on I ,RAK

O * z = ei (usehomR circle d a
Let LED

,
orbit

i stab(I) = E2n ne2R

· 1
①

1

Stab
,p(0) = IR

- i

S4A[1 ,
2

,
3

, 43

Orbit of 1 = [1
,

2
,
3

, 43

Stabilizer = Se ,
(23), ..., (243)4ES



Theorem Orbit-stabilizer Theorem

GAX and xeX
.

The map

I
G/qcG *

xorbits of X

cosets

gGxl'g * (

is a bijection .

Hence if G is finite

G = G *x · Ga

Proof :

Call map so (gG) =gxx

well-defined and one-to-one :

gGu = hGnEL'gE Ga
= (ng)+ x = x

E
g*x = hAc

= q(gGa) = D(hGu)

Onto : Given any yeGA , y =gAx for some geG

q(gGa) = gxx =

y = q is on to

Now if G < X, then

G

Ga
=G : Ga] = G/ Ga

So G = G* G =G
*

Corollary
Let G (finite) AX

Size of an orbit Gx divides G
.

G *x G



Warmup :

G = 25
,
X = 36 = G has a fixed point in X

IG = 25 = orbits of size 1, 5 or 25

X is partitioned by orbits

All ways
to partition a set of size 36 into pieces of sizes 1

,
5

,
25 involve at least one

piece of size 1

xeX has orbit of size g*= VgeG
=>a is a fixed point

Counting orbits

2 extreme cases

1) Action is trivial g*x = x VgeGEX

2) There is one orbit : the action of G is transitive on X

i . e. Vc
, geX, EgeG With y =

g#x

Su [1 , ..., 43 is transitive

Theorem (Cauchy
G a finite group and p a prime with p G

ThenI an element of order peG Chence also a subgroup of size plcycid)
Proof :

Let X = [ (x1
,

. .

., xp) xiG , x]
....

xp = [q][xXG
ptimes

There are IGI choices fors Gl choices for s ..... G choices for spa

Then
x....xp = 7q= xp

= (x7 ....

xp-,
)

can choose1; xp-1 freely as long as

xp = (x
..... xp -
1)

=> X = GP which is divisible by p because G is

p(G) => p(X)



Let &pAX
& p

= 20, 7, ..., p-13 with + mod p

[pAX by ma (xy , ..., xp): = (m+ ....., xp , xq . . . . , xm) , me 2p

Let Ep act on X by "cycling" tuples

ii meprotates↑
Then by corollaryI each orbit in X has size I or p

Have (1 .....,q)eX and mx (12 , ...., 1q) = (Aq . . ., +a) Vme2p

=> orbit of (1gi: 1q) has size I

suppose all other orbits have size p. . Then X = Isizes of orbits Corbits partition XI
= 1 + KP all other orbits

orbit of

(1q ....,7)

=> X = 1 modp # since p IX

contradictionI another orbit of size I
,

i.e.

(1
, . . ., (p) + (1q ...., 1q)eX whose orbit is size I

=> m + (x1 , ..., xp) = (xy ...., xp) Vm

ip" meprotates
Sa

=> xy = xz = ... . =

xp = x (for example)
Thus Ac#1q s .

+c =1q order ofa divides p

= o(a) = 1 or o(x) =

p



Asx + 1q => o(x) = 4

Hence H = Ex , c, ...,c,"= 14-G of sizepexists



3. How to Count
Example : Vertices of a square
·

square and we can color R B

⑧

Question: How many different squares
?? What if we are allowed to rotate ?

Answer : X = 24 = 16

X = Call possible colored squares ?

G = 57G ,
v

,

22
,
23 group of rotations

GAX in "the obvious way
"

ry

....

I

o ⑨

> count orbits
D O ① ①

orbit of size 1 stabilizer size 4
① P D &

D O ① ①

two orbits of size & ,
stabilizer of size I

& ① ① G

· ⑨

orbit of size 2
,
stabilizer of size 2)= 31q ,

14
· ⑧

① ①

orbit of size 4
o

~ get orbits of sizes 1 + 1 + 4 +4 + 4 + 2 = 16

We get 6 orbits in total

Fix

Definition

GAX

Fix (g) = [xXg* x =x][X



Burnside Thm

Theorem Burnside Theorem

Let G be a finite group ,
X a finite set ,

GAX

# Orbits== Fix(

Proof :

Consider the set

Y = ((g , x) : ga = a4[GxX

and count size of Y in 2 ways .

(1) For fixed g ,
there are I Fix (g) us such that gaza

Thus Y =eq Fix (g)

(2) For fixed a
,
there are Ga g's s . t gazu

orbits
Thus Y =Z G

X1 Xz

Massaging this sum
X3 im

Xi

Suppose X1. ... X + are in orbits in X

Note : t is the number we want

=Zyn=x an orbits partition X

= xeXi
, then G = G* Gn = (G) = (Xi)/Gal

= G Zx
:

Wi

==
=> + = Horbits=x)

A



Note

· Fix (g)[X GafG

· Burnside Thm says

Horbits= average It of fixed points

Example :
pg 26

contd

counting orbits using burnside
Horbits =

11 Z Fixy,

(i) g = 1q : have Fix (1q) = X always happens
=> Fix (1q) = (x) = 24

(ii) g = v

....

-> Fix (v) = 2

(ii) gare
& ①

.......

..... & ①

=> Fix (v2)) = 4

liv

gir Fix)

Hence Horbits =

+
(24+ 2 + 22 + 2)=

*



Example : Let ge
3 .. How

many ways can you
color the faces of

--------

usinga
colors

Naive attempt :
q choices for each face XXq colored tetrahedra

problem : &
D

-

_?B
>

........
D

are really the same , eventhough counted twice

Attempt #2 : G rotational symmetries of

--------

X = Eset of all possible painted tetrahedra ?

GAX with arotation sending a painted tetrahedron to its image under rotation

Count # orbits

(i) Fix (1q) = X = q4 = naive answer

(ii) g=

-- topmustbesamorapossibilit
is

=>a possible fixed tetrahedra

Similarly for other Y turns and there are 4 turns 4xq
(iii) g = 2/s rotation = " rotation in opposite direction

=> a fixed here as well

423 rotations => ↑xq



(iv)
g=& fixed......

--------

⑧

-swapped
I

q choices for pair q choices for pairs

3 rotations like this 3xq
Thus

# of painted tetrahedra= (q4 + 119)

Egg = 4

# = 36



4. Sylow Theory
Recall : Lagrange's Theorem
(1) Theorem Lagrange's Theorem

Let G be finite group and HEG
. Then the order of H divides order of G

H G

Moreover
G = [G : H]
H

(2) Converse of Lagrange's Thm not true .

if m IG then G has a subgroup of order m is NOT true

e . g.
1) G = rotations of

........

= G = 12

with divisors

1 2 3 4 6 12

[1q} I' NONE IG)
&

-
14

2) G = S5 , symmetric group
G = 5 ! = 120

So that 15 G but NOT subgroup of order 15

(3) But 1) we do have a partial converse to Lagrange : Cauchy's Thm

p prime , if p
IG

, then G has prime subgroup of order p



Sylow p-subgroup

Definition Sylow p-subgroup
G be a finite group with

G =

p
&

m wherep prime

and god (p , m) =
1
. Then subgroup H&G with

H = ph
is called aSylow p-subgroup of G

Example :

Suppose G = 23.5? 13

then a subgroup of order

2 is aSylow 2-subgroup
5 is a Sylow 5-subgroup
13 is a Sylow 13-subgroup

Sylow 1st Theorem

Theorem Sylow's 1st Theorem

If G has order prm with p prime and god (p , m) = 1
, then

G has aSylow p-subgroup

Proof :

Let G AX

X = set of all subsets of G having ph elements.

Acts by geG ,
AEX

, then

g *A = gA = (ga : a = 13

Then X has (a) = (P)
"Ex : p does not divide (P)



=>
p does not divide X

Also X = disjoint union of orbits
=> X =I size of orbits.

Conclusion: I an orbit whose size is NOT divisible by p
call this orbit A- X

By orbit-stabilizer theorem then says
prm = /G = G *A GA

orbit stabilizer

phG => p"G *A Ga

=> phGA(x)
=> ph GA

Now let geGA and aeA . Then

gA = A

and in particular gaeA. Thus

Ga[A

Finally
Ga = Ga = A = ph(*)

By (*) and (**)

IGA = ph
But GA is a subgroup.

B

Example G-rotations of
--------

with G = 2?
& '12

=> Sylow 2-subgroup order 2
& '/2

-identity



Sylow 3 subgroup order 2

------- /3 , 23

Example : So has order 120 = 2%
%

. 3 . 5

=> So has subgroup of order 2= 8
,

3
,
5

Note : Sy does NOT have a subgroup of order 3 . 5 (prove :

Sylow 2nd Theorem

Theorem Sylow 2nd Theorem

If Pe , P2 are sylow p-subgroups then I a geG s .
t

Pz = gPagt

Sylow 3rd Theorem

Theorem Sylow's 3rd Theorem
Let Np be the number of Sylow p-subgroups of G where G = p

Y
m. Then

(i) Np = 1(modp)
(ii) Np m

Proof :

(i) Let X = CH1 ... HwpY = Eset of Sylow p-subgroups of G3

H11X ;
h * Hj = hHjh

I
Exercise

I(a) hHjh' is also a Sylowp-subgroup
(b) Above is an action

(c) Kj : = Stabilizer of Hj . They Kj = H, Hj



From Exercise

k
,

= H
,
= Stabilizer of H

,
is just H,

=> orbit contains 1 element

For jf1 then Kj = H, Hj is a proper subgroup of H
,
where

H
,

= p

Thus Kj = p" for some kn

By orbit-stabilizer theorem

p = H
,

= kj H
,
* Hj

we get p = p H
,
* Hj with Kin ,

so

pH ,
* Hj

As X is the disjoint union of orbits,
we have :

Np = #Sylow p-subgroups
= X

= Isizes of the orbits

= 1 +Mp = 1(modp)
orbitofall other

H , orbits have

size p

(ii) Use a group action

Let GAX

X = [Hz , Hz ...., HnpY = [set of Sylow-p-subgroups ?

by :

g
* H = gHgt

Makes sense ? (show action

Firstly is gHg" a Sylow p-subgroup ,
i . e

.
another element of X



(a) gHg" is a subgroup.

a . begHg =>
a=ghab =ggghe,

hieH
= ghhgegt

a gHgt

etgHg
(b) Sylow

If bijection bijection
, gHg (prove

order ph ph elements order ph

=> gHg" a sylow p-subgroup.
(Also show (A1) and (A2) ....)

Now we have G& X
. Then Sylow#2 action has I orbit, namely all of X transitive action

By orbit-stabilizer theorem action has 1 orbit

G = pm = G * H=G+y = X GH,

=> X divides prm
Now consider god) X

, p) . Firstly

god divides p= god = 1 or p

(a) gcd = p => pX a contradiction since Sylow #3 (i) says
X = Np = 1(modp) = 0 (modp)

(b) Thus god = 1

Note : a bc and god (a ,
bl =1 ac

=> X = Np divides m
*



Theorem

H is a normal subgroup of G

#
gH = Hg

#

gHg" = H

Proof : Prove later

Observation: Suppose the number Np of Sylowp-subgroups is equal to one.

call the Sylow p-subgroup H , say

Then for any g ,
we have gHg" is also aSylow p-subgroup

But (1) there is only one such ,
so that

gHg" = H

Np = 1 => H is normal

Example :

Suppose G has order 175.

G = 52x7
.
Consider Ns=# of Sylow 5-subgroups.

Sylow #3 (ii) => Ng 7

=> Nj = 1 or 7

Sylow #3(i) => Ng = 1 mod 5

=> Nz = 1

Conclusion : G contains a normal subgroup with 5= 25 elements.



5. Conjugacy
Definition

Two elements ga , getG are conjugates iff

92 = hgth" for some heG (*)

Notes :

(1)gz = hgzh" = hgzh =

gz

=> (h) gz(h")
=> kgzk" =

gz for KeG

(2) Intuitively conjugate elements have similar algebraic properties .

Example : G = rotations of

"
--------

&
"L

then "3

--&gate
s g

are all conjugates are all conjugates

Example :

92 = hgqh" and g = 16

g2 = (hgh)
= hgzhg...gah" In times
= hght

= hh = 1q

Similarly gz=gch so that g = 7qg* = 1

=> thus gy and ge have same order.



Example :

G = GL(n
,
IR)

Then in linear algebra , an AEG is diagonalizable when
A =MDM

for some M and D diagonal .
· A and Dave conjugates (similar matrices
· A and D represent the same linear map with different coordinates
·

They have same eigenvalue ,
trace and determinant

Conjugacy class

Definition Conjugacy class

If geG , then conjugacy class of g is

ga = Ehgh" : he GY

the set of all conjugates of g

Centralizer

Definition Centralizes

The centraliser of g is

((g) = CheG hgh=g}

Example : GAG by conjugacy

hxg = high
· orbit = ga
·Stabilizer = ((g)
· Fix (n) = (geG)hgh = g3 = (q(h) .

Hence

# conjugacy classes=I Can Burnside thes



Example : G is Abelian Ci
. e. gh = hg Xg ,

h)

Then
high theg =

g

=> gG = Eg} in an Abelian group

Example : in any G
&

h1qh" = 1q => 1 =41]

Conjugacy in Sn

Definition Cycle Structure

The cycle structure of a sen is a formal expression of the form

ni+ nz + .. . + n

where nieI and nznz.....In where if O is written as a product of disjoint cycles , then
there are cycles of length nn... s including cycles of length 1

Example :

1) 0 = (123)(45) ESz has cycle structure 3 + 2

2) o = (123)(43)E57 has cycle structure 3 + 2+ +

3) 0 = (1235)(243) = (1243) has cycle structure 4+

Theorem

Two elements of Su are conjugate
#

they have same cycle structure

Proof :

(E) : Suppose EMOM' ESn

Consider
(a) a

,
... an

a cycle of 0. Then

n(a = az
... an)n = (u(a , )m(az) . . . n(an))(*)



RHS : Mail , Maixi

LHS : M(ai)Maj 18 a, ,
M

, mai xi)

Thus have expression above

Now write O = 0, ... on a product of disjoint cycles
T = mou = no,u non ... nou

By (* ) Mo ,u is a cycle of same length as O:

=> M ,
I have same cycle structure

(E) : Suppose o
,
I have same cycle structure .

n
,

+ .. .. +ni

o =a,
... an, .... Ca ... Gand

M

c (b
,

. . .

. bin, .... (b...... bina

Then M is a bijection Sn with

aij
<
dijt

M

bij i h
Emili

Example : conjugacy in Sn

n = 5

Cycle structure 2 . g

1 + 1 + 1 + 1 + 1 1sa

2 + 1 + 1 + 1 (12)

2 + 2 + 1 (12)(34)

3 + 1 + 1 (123)

3 + 2 (123)(45)

4 + 1 (1234)

5 (12345)



Every oeSn is conjugate to one of these seven.

Example : how many elements of So are conjugate to (12) (45) ?

Answer :

Disconjugate too = (12) (45) exactly when (b)(d) fo,d distinct

choose a
,
b

, c d in (2) ways.

Place them: --1 -- I

in fact (a, ))
-- (

b , c ,
d determine rest

=> 3) , ) = 45

Counting conjugate elements
Question* How many elements of Su are conjugate to some fixed o Sn

Make In act on itself by conjugation , Sn &Sa by
M*

= NO
Then orbits = conjugacy classes

stabilizers = centralizers

By orbit-stabilizer theorem
n ! = Sn = o (su(0)

Sconjugatesalmita
of o

=> # we want = on = n !

C(0) a count thisa

Write o as a product of disjoint cycles st there are my cycles of length r

Then

· ....ramram
-

and

mon=... (m(a, ) ... m(a ,) ... (m(am . . .mamil . ... (**)



We want to count the M's s .t (x*) = (*) i . e. mon= o

Need (M(a, . . . (a, )) to be one of the (**)
.

There are my choices for which one . Similarly (n(az ....n(a)) has my choices for matching
up, . . . Mr. ways the (**) can be matched with (*)

suppose (n(an) ... n (a,)) is matched with Cai ... air)
, then either

m(ax) = aiorm(ax) =

ai
..... n(ax) = air

i

. e. v possibilities for u(a ,
)

As soon as this choice is made
,
the possibilities for the remaining ulaj) are completely

determined.

This is the case for eachr-cycle
(n(ax ) . . . u(air)

of most giving my
Mr

ways of therecycles of mont can equal theve cycles of O
.

Conclusion : there are my ways thev-cycles in (*) are equal to the r cycles in (x)

Let v vary to give

my! far is st mont= o

r=

=> # of conjugates = n !

of o
mu !Mr

r=

Note : If Mr = 0 then

my! = 0!%= 1

Example : 0 = (12) (45) ES

=> m
,

= 2
, mz= 2

# conjugatesofmixme

=6245



6. Counting-Conjugacy
Recall if GAX , then by Burnside theorem

#orbits =1 Fixly (*)

Suppose now that neX with neFix(g) so

g *x =gx = x

Consider

(hgh)(ha) = hg(a) = ha

i . e. ne Fix(g) => hucFix(hgh)

Conversely if yeFix(hgh) ,
i. e.

hgh(y) =

y => gh'(y) = my
i

. e . yeFix(hgh) => h(y) Fix(g)
This gives

Fix (g), Fix(hgh)
gishly

maps which are mutual inverses > bijections
i

. e. Fix (g) = Fix(hgh)
Thus conjugate elements contribute the same summand to (*)

Thus

Horbits=ZigFl Polya Enumeration (**)

conjugacycase
Remark : G = So

G = 5 ! = 120 but G has only 7 conjugacy classes corresponding to the permutations of 3.

(1 + | + | + | + )
,

2+ 1 + 1 + 1 ....)

=> (* ) has 120 terms ,
(**) has 7



Extended Example
A graph is a set of nodes/vertices connected by edges.

Convention: We won't allow multiple edges between vertices or loops

·

· ·

graph I

· ·

2 graphs I, and I are isomorphic if I a bijection f from vertices of E,
toI st

u and v are joined by an edge in I, EX flu) and flv) are joined by an edge in Iz

Example :

I

· ·

5 ·

· · · · 2

· ·
>

(4
. 5) (12345)

· ·

4
·
3

· ·

isomorphic to each other

Question: how many non-isomorphic graphs are there with 5 vertices

Alternate view :

Consider
·

Complete graph Ks ·

· ·

graphs on 5-vertices <77 > colorings of edges of Ks with 0,1



·

·
I I

· ·

[ Y O
· ·

00
11

O j
· ·

· ·

O

ThenI
, isomorphic to E2 > corresponding colorings of Ks are isomorphic

Now let So & X

X = Call possible edge colorings of Ks)

Then I non-isomorphic graphs orbits

Using Polya enumeration ,
list conjugacy classes in Ss

Table #1 (conjugacy in Ss)
n !

Partition of 5 example o gG = my um

1 + 1 + 1 + 1+ 1 Isn 1

2+ 1+ 1 + 1 (12) 10

2+ 2 + 1 (12)(34) 15

3 + 1 + 1 (123) 20

3 + 2 (123)(45) 20

4 + 1 (1234) 30

3 (12343) 24

Reality check : GAG by conjugation
h*g = high

Orbit of g
= Sh*g

= hgh : heG]

=> G = disjoint union of orbits/conjugacy classes



Example o Fix (o)

1G X = 210

·- edges the same

27 ( = 2
# colors)color must have

· ·same 0 , 1-label

(12)
·

·
(12)(34)

· ·

26

·

(123) -

(123)(45) y.
(1234)

P(12345)



7. Subgroup Lattice
Definition Subgroup Lattice

Let G be any group.

Then the subgroup lattice of G written LCG) is the set of all subgroups of G s .
t

H
,
and Hz G With H

, SHz , then in LCG) write :

Hz

H
,

Schematic G

Ha①
[1

Example : G = In = 50
,

1
,
2, ... n-13 with t mod n

Then H = [1
q

3 = 503 a subgroup
If H + 503 then let Of keH be smallest

=> R
,

k + k
,

k + k + k
,

...H
.

=> K
,

2k
,

3k, ... H

=> [0
,

k
,

2k, ...3 H.

Now let heH and divide with remainder

h = mk + v OvCk

=> v= L-mkEH by closure since hel, mkeH

=> reH

Since 1 smallest and Or< k= v= 0 => h=mk



Thus H = 50
,

k
,
2k

,

. . . (s - 1)4} (*)

with Sk = n.

Conclusion : If HE In
,

thenH looks like (*) withK dividing n
i

. e. kn

n = 12

403
006 0

50 , 63 El2 006 = 00
660 110

20 , 4 .
83 Els

50
,
3

,
6

,
93 = 24

50
,
2

, 4 ,
6

,
8

,
104 =6

212

Note &g 26 , 22-24,

2(2
,2) 212

24 26

↳3

22

203

v rotationExample : Symmetries of equilateral triangle &
S reflections

G = 51q .
r

,
v2

,
5

,
us

,
v2s3

us vs

Then [1q3 , [1g .
v

,
r23

. [7g ,
53. [1g ,

vs3
, [7g ,
rs] and G subgroups

= 2s



Now let I be an arbitrary subgroup.

(1) Suppose reH so that [1G
,
v

,
r3EH

=> 3 (H)6

By Lagrange ,
H divides6 H = 3 or 6

=> H= 1 ,
V

,
v} or G

(2) Suppose seH and re H . Then

[7q ,
332H => (H) = 2

,
3

,
6

If H = 2
, then H = 51g

,

S3 and H = 6
,
then H = G

If (H) = 3
, then the element of H that isn't If or s cannot be r Chence v

i
. e. H = [7g ,

S
, r5] or H = 31q ,

5
,
8353

If first , then vs . SCH = rS=veHX

Similarly not second

G

[7q ,
r ,
223

StasY [1qrsY [Aqis]

5744


