

Fields

Definition Field A field is a set IF together with binary operations addition multiplication $F \times F \rightarrow F$ FxF→F (a, β) → a β $(\alpha,\beta) \mapsto \alpha + \beta$ satisfying the following axioms Commutativity $\forall \alpha, \beta \in \mathbb{F}$, $\alpha + \beta = \beta + \alpha \qquad \alpha \beta = \beta \alpha$ Associativity: $\forall \alpha, \beta, \gamma \in \mathbb{F}$, $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma \qquad \alpha(\beta \gamma) = (\alpha \beta) \gamma$ Identity elements: 30, 1 < F, 071 such that for all F, $\alpha + 0 = \alpha$ d1=d Inverses: VaEIF, J-aEIF such that $\alpha + (-\alpha) = 0$ V x ∈ IF, ∃ x⁻¹ ∈ IF such that $dd^{-1}=1$ Distributivity: Va, B, r ElK, we have $\alpha(\beta+r) = \alpha\beta + \alpha r$ Subfield Definition A subfield of a field is a subset that is also a field under the same t, X

Example: Q < R < C

Rings Recap

Definition	, Abelian	, Groups					
An A	belian (co	mmutativ	re) grou	p R is	a set witl	n a binary	operation
	+:	r×r →	R				
		(a,b) H	o a + b				
such t	hat						
	0 <u>4</u> L – L	ta Va	hel				
		τα γα ₁					
(1)	a + (b+c)	= (a+b)	+ C				
(2) =] 0 E R S.	t Ota	= a+ 0	Yaek			
(3) ∀	laer, I((-a) E R .	s.t a+((-a)= (-	a) + a = 0		
Notation:	We write	a+(-b)) = a-b				
Definition	of a rin						
		7					
Detinitio	1 ring						
A ring	K is a	set with	. 2 bin	ary oper	rations		
	addition				mult	iplication_	
	R×R —	⇒ R [.] ,			R×F	K→R;	-
	(a, b) H	a+b			(a,b) → axb	
satisfui	ing followir	a axioms					
•)	(P_{\perp})	an AL	lian				
		un /100	nun gr	oup)		
	$\left[\left(A \times b \right) \right] $	= ax(b)	XC) A	a, b, c e K			
ii)	(0,0/,0						
;i) ;ii)	a x(b+c	,) = a x	b + ax	c V	a,b,ceR		

Notation, axb is represented by ab

Commutative Ring

Definition, Commutative Ring
A ring is commutative if
$$\forall a, b \in R$$
,
 $a \times b = b \times a$.
i.e. multiplication is commutative
Subrings
Definition, Subring
Let R be any ring (+, x), let $S \subseteq R$ be any subset
We say S is called a subring of R if:
(a) $0 \in S$ (identity)

(b) a, bes
$$\Longrightarrow$$
 -aes, a+bes, axbes (closure)

Ring Homomorphism,

Definition Ring Homomorphism
Let R, S be any 2 rings. A function

$$d: R \rightarrow S$$

is a ring homomorphism if $\forall a, b \in R$
i) $d(a+b) = d(a) + d(b)$
R
ii) $d(a \times b) = d(a) \times d(b)$
R

If R and S are rings with identity 1 and $\alpha(1) = 1$

then a is a unital ring homomorphism.

Important !

$$I \neq \alpha : R \longrightarrow S$$
 is an onto homomorphism (or isomorphism) then

$$\alpha(l_R) = 1_S$$

Smallest subfields

Definition

$$F \leq C$$
 a subfield and $\beta \in C$.

Write $F(\beta)$ to mean the smallest subfield of C containing F and β

Here the smallest means if F' is any subfield of C containing F and
$$\beta$$
, then
 $F(\beta) \leq F'$

<u>Example</u>:

Can also consider
$$F(\beta_1, \beta_2)$$
 etc ... so that we have $Q(\alpha, w)$
Then $\alpha_1 w \in Q(\alpha_1 w)$
 $\implies \alpha \times w = \alpha w, \alpha \times w \times w = \alpha w^2 \in Q(\alpha, w)$
i.e. $Q(\alpha_1 w)$ contains the solutions to $x^3 - 2 = 0$

Exercise:
$$Q(\alpha, \omega)$$
 is the smallest subfield of C containing these solutions
Loosely a symmetry of the solutions to $x^3 - 2 = 0$ is a symmetry of $Q(\alpha, \omega)$ that respects the t, x
Example: Consider $Q(\alpha, \omega)$ and $Q(\alpha, \omega^2)$
Then; $\alpha, \omega \in Q(\alpha, \omega) \Longrightarrow \alpha, \omega x \omega = \omega^2 \in Q(\alpha, \omega)$
 $\implies Q(\alpha, \omega^2) \subseteq Q(\alpha, \omega)$
 $\alpha, \omega^2 \in Q(\alpha, \omega^2) \Longrightarrow \alpha, \omega^2 x \omega^2 = \omega^4 \in Q(\alpha, \omega^2)$
 $\implies Q(\alpha, \omega) \subseteq Q(\alpha, \omega^2)$
Thus \exists a symmetry $Q(\alpha, \omega) \longrightarrow Q(\alpha, \omega^2)$
which sends $\alpha \longmapsto \alpha$ and $\omega \mapsto \omega^2$
Then, $\alpha \omega \longmapsto \alpha^2$

$$\alpha^{3} = \alpha \omega \longrightarrow \alpha^{3} \sqrt{2} = \alpha \omega^{4}$$

$$= \alpha \omega$$

$$= \alpha \omega^{2}$$
Try at home
$$Q(\alpha, \omega) = Q(\alpha \omega, \omega^{2})$$

$$\Rightarrow tst, ts, (ts)^{2} etc all symmetries$$
But Galois Theory not geometry
$$\alpha \omega^{2}$$

$$= \frac{15 - 1}{4} + \frac{12 (5 + 15)}{4} i$$

$$= \frac{15 - 1}{4} + \frac{12 (5 + 15)}{4} i$$

$$= \frac{15 - 1}{4} + \frac{12 (5 + 15)}{4} i$$

$$= \frac{10}{4} + \frac{10}{4} i$$

$$= \frac{10}{4$$

that is has NO non-trivial non-zero. Equivalently

 $NZD(R) = R \setminus \{0\}$

Example

R=Z, ZD(R)={0} ⇒ Integral Domain.

```
<u>Remark</u>: For any ring R, the condition, ZD(R) = {0} is equivalent to either of
   i) \forall a, b \in \mathbb{R} \setminus \{0\}, we have ab \neq 0
   ii) \forall a, b \in R, the equality ab=0 \implies a=0 or b=0
Example: Z6 NOT an ID
```

1 Rings of Polynomials

Le	et R be a	iny co	mmut	ative	ring	with	id	entit	y 1	εR,	1 †0	
Le	et x be a	forma	l sym	nbol	(x∉R	:)						
A	polynomia	ıl in x	L OVE	rRi	s a fi	ormal	expre	ession				
				f = a	0 + a,	x + ·	•• + 6	an X ⁿ				
wl	here ne N ^C	'= N U	10}	and	a ₀₁	. an e	R.					
		a; is t	he co	o-effi	cient	of o	i					
(0	onventions]]		1						
(a	$) x^{0} = 1$	and x	1 = x									
(b) We can	Miss	term	5 A·X	wit	h a:=	:0	(0	(08-	[ficie	nt)	
	For exam	ole : 1	1 + (<mark>) 1</mark> 4	2^{2}	: + 2) _Y				,	
(() hie abbr	eviate	- ' , 1~	= 1								
()		omíal	ست ست		ax ⁰ .		<u> </u>				e La e L	
10.	/ // //////		VI 1	PUTPL,	U.J. •	- (1 -	/ 4	15 //11				
(0) (ancidar	2[:alc		~ 1	n				JIUNL	poignomeral
(e) Consider	2 pol	ynom	ials								polynomial
(e) Consider	2 pol	ynom	ials f=a	_o t a _i	x + ··	·· + 0	anoc m				
(e) Consider	2 pol	ynom	ials f = a g = b	0 t a ₁	x + ··	·· + (anoc bmoc	,			
(e) Consider When m	2 pol	ynom f = g	ials f = a g = b ⇐	$b_0 + a_1$ $b_0 + b_1$ $\Rightarrow a$	x + x +	··+ a ··+ 1	anx bmx = b1		···, a,	n = bŋ	
(e) Consider When m When n	2 pol = n : -	ynom f=g apply	ials f=a g=b ć	ota ₁ otb1 ⇒ a ention	x + ··· x + ··· o = bo ((b)	·· + 0 ·· + 1	2nx 2nx = 61	· · · ·	· · ·, a,	n = bŋ	
	Vonsider	2 pol = n : - >m, - g =	ynom f=g apply bot	ials f=a g=b conv	$b_0 + a_1$ $b_0 + b_1$ $\Rightarrow a$ ention $+ b_2 x$	x + ··· x + ··· o = bo (b)	··+ (··+ (, a,	2nx 2nx = 61 6mx	, , ,	···, a, 0,x	n=bn +1	+ 0x ⁿ
	Vhen m When m	2 pol = n : - >m, - g = ⇒ b,	ynom f = g apply b ₀ + m+1 =	ials f = a g = b ← conv b,x	$b_0 + a_1$ $b_0 + b_1$ $\Rightarrow a$ ention $+ b_2 x$ \cdots , b	$x + \cdots$ $x + \cdots$ $a = b_{0}$ (b) $x^{2} + \cdots$ $a = 0$	··+ (··+ (, a ₁	15 cu a _n x b _m x = b ₁	, , , , , ,	···, a, 0,x	h = bη + ι + ι + ι	- + 0x ⁿ
) Consider When m When n 	2 pol = n : - >m, - g = ⇒ b, for n	ynom f = g apply b ₀ + m+1 = >m	ials f = a g = b conv b,x 0, · Then	$o + a_1$ $o + b_1$ $\Rightarrow a$ ention $+ b_2 x$ \cdots , b + or	x + x + o = bo (b) 2 + n = 0 eqna	·· + 0 ·· + 1 , a1 ·· +	anoc bmoc = bi bm x	, , m +	···, a, 0,x	n = bn	- + 0x ⁿ
) Consider When m When n Jimilar ; if m2n	2 pol = n : - >m, g = ⇒ b, for n f=	f = g apply b ₀ + m+1 = >m g <	ials f = a g = b conv b,x 0, · Then	o + a ₁ o + b ₁ ⇒ a ention + b ₂ x , b for a ₀ = b	$x + \cdots$ $x + \cdots$ $a = b_{0}$ (b) $\frac{2}{2} + \cdots$ $a = 0$ $eqna$ $a_{1} = 0$	··+ 0 ··+ 1 , a, ··+	15 cul a _n oc b _m oc ^m = b ₁ b _m oc ^m we	$\frac{1}{n}$	· ·, a, 0,x bn, b	h = bη + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	$r = b_{m} = 0$
) Consider When m When n When n = Jimilar = if m≥n if m≤n	2 pol = n : - >m, g = ⇒ b, for n f = f =	ynom f=g apply bot m+1= >m g <	ials f = a g = b conv b,x 0, Then	$o + a_1$ $o + b_1$ $\Rightarrow a$ ention $+ b_2 x$ $+ b_2 x$ $\cdot \cdot \cdot , b$ for $a_0 = b$ $a_0 = b_0$	$x + \cdots$ $x + \cdots$ $a = b_{0}$ (b) $\frac{2}{2} + \cdots$ a = 0 a = 0 a = 0 a = 0 a = 1 a	··+ 0 ··+ 1 , a, ··+ lity, = b, ,	<pre></pre>	have $a_n = b_1$	··, a, O., b on, b	n = bn h = bn h = i n + i n + i = ·	$r = b_{m} = 0$

Ring of Polynomials

Definition

```
Let R be any commutative ring with identity 1 \in R, 1 \neq 0
```

Denote the set of all polynomials over R by

R[x]

Define addition and multiplication

Addition: (+)

 $\forall f, g \in R[x]$

 $f = a_0 + a_1 x + \dots + a_n x^n$ $g = b_0 + b_1 x + \dots + b_n x^n$ $m_1 n \in \mathbb{N}^0$

$$f + g = c_0 + c_1 x + \dots + c_q x^q, \quad l = \max\{n, m\}$$

$$= \begin{cases} a_i + b_i & \text{if } i \le \min\{m, n\} \\ c_i = \begin{cases} a_i & \text{if } m < i \le n \\ b_i & \text{if } n < i \le m \end{cases} \quad (c_0 = a_0 + b_0)$$

By convention (e), assume n=m. If $m \neq n$, then append 0 terms to the "shorter polynomial $f + g = (a_0 + b_0)x^0 + (a_1 + b_1)x^1 + \cdots + (a_n + b_n)x^n$

<u>Multiplication</u>: (x)

$$f \times g = (a_0 + a_1 \times + \dots + a_n \times^n) \times (b_0 + b_1 \times + \dots + b_m \times^m) = d_0 + d_1 \times + \dots + d_{n+m} \times^{n+m}$$

where for OSKSM+n

Note that

$$f \times g = (a_0 x^{\circ} + a_1 x^{\circ} + \dots + a_n x^{\circ})(b_0 x^{\circ} + b_1 x^{\circ} + \dots + b_m x^{\circ})$$

= $a_0 b_0 x^{\circ} + (a_0 b_1 + a_1 b_0) x^{\circ} + \dots + a_n b_m x^{n+m}$

Proposition, Ring of Polynomials

Let R be any commutative ring with identity $1 \in R$, $1 \neq 0$

Then

$$(R[x], +, x)$$

is a commutative ring with an identity.

Theorem

Let R be an integral domain

Then R[x] is an integral domain, i.e. $\forall f, g \in R[x] \setminus \{0\}$

$$fg \neq 0$$
 and $deg(fg) = deg(f) + deg(g)$

Example: Non-example

 $R = Z_6$, then (3x+1)(2x+1) = 5x+1

Example: R commutative ring with 1ER and CER and define

$$\mathcal{E}_{c}: \mathbb{R}[\mathbb{X}] \longrightarrow \mathbb{R}$$

by
$$\varepsilon_c(a_nx^n+\cdots+a_nx+a_n)=a_nc^n+\cdots+a_nc+a_n$$

Then
$$\varepsilon_c$$
 is a ring homomorphism
 $\varepsilon_c(f+g) = \varepsilon_c(f) + \varepsilon_c(g)$
 $\varepsilon_c(fg) = \varepsilon_c(f)\varepsilon_c(g)$

Division Algorithm

Theorem, Division, algorithm,
Let
$$f, g \in R[x]$$
 s.t
 $g = b_m x^m + \cdots + b_1 x + b_0$ ($b_i \in R$)
with b_m having an inverse in R under X
Then \exists unique $q, x \in R[X]$ s.t
 $f = qg + r$ $deg(r) < deg(g)$

If
$$R = a$$
 field then the condition on g is just $q \neq 0$

Roots and irreducibility

$$If f = a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{n}x + a_{0} \in R[X]$$

and ceR, then c is a root of f when:

$$a_{n}c^{n} + a_{n-1}c^{n-1} + \cdots + a_{n}c + a_{0} = 0$$
 (in R)

Example: x^2+1 is an element of Z[x], Q[x], R[x], C[x]

Theorem Factor Theorem

$$f = (x - c)g$$
 where $g \in R[x]$

Theorem

Example: $x^2 + 3x + 2 \in \mathbb{Z}_{\ell}[X]$ not an ID

$$= (x-1)(x-2) \Longrightarrow x = 1 \text{ or } x = 2$$

and
$$(x-1)(x-2) = 3 \times 2$$
 (i.e. $x = 4$) (i.e. 4 roots
 $(x-1)(x-2) = 4 \times 3$ (i.e. $x = 5$)

Definition

A non-trivial factorization of

f=gh

with g.hER[X] and deg(g), deg(h) 21 (equivalently deg(g), deg(h) < deg(f))

Definition reducible/irreducible

Call f reducible over field F if I a non-trivial factorization

Otherwise F is irreducible

Example:
$$x^2 + 1 = (x - i)(x + i)$$
 in $C[X]$

- reducible over C
- x²+1 irreducible over Q, R

Example: f=ax+b (a,beF)

f is irreducible over F

<u>Consequence</u>

i.e. f reducible over C

Example:

$$eg: x^{4} + 2x^{2} + 1 \in Q[x]$$

$$= (x^{2}+1)$$
 reducible over Q

and clearly no roots in Q

eg: ax+b E F[X] irreducible over F

but has root
$$-b = -ba' \in F$$

Proposition

f has no roots in $F \Longrightarrow f$ irreducible over F

$$(\Longrightarrow)$$
: Suppose f has a root. We will show f is not irreducible.

$$\exists a \in F$$
 st $f(a) = 0$. Let us divide by $(x-a)$ with a remainder

$$f = (x-a)q + r \quad \text{where} \quad r=0 \quad \text{or} \quad r\neq 0 \quad \text{but} \quad \text{deg}(r) < 1$$

$$\neq \text{ero const} \quad \text{non-zero const}$$

$$0 = f(a) = 0q + r \implies r = 0 \qquad r \text{ is a const}$$

2, 3 = deg f = deg(x-a) + deg
$$q = 1, 2 \implies f$$
 is not irreducible

$$2,3 = \deg(f) = \deg(n) + \deg(v) \implies \deg(n) = 1 \text{ or } \deg(v) = 1$$

Suppose degu=1
$$\implies$$
 u=cx+d, where $c\neq 0 \implies c^1 \in F$
f=(cx+d)v = c(x+c'd) \implies x=c'd, then x is a root

Similar for deg v=1 Field Zp

We need another field to play with.
Seen that
$$(Z_n, t, x)$$
 a ring
 $Z_n = \{0, 1, 2, \dots, n-1\}$
If n=p prime, then Z_p a field
[hint: if $k \in Z_p$ with $k \neq 0$, then $\exists a \in Z_p$ s.t
 $ak \equiv 1 \pmod{p}$
[i.e. $ak = 1$ in Z_p

Notation: Write Fp from now on, instead of Zp
If n \$\equiv prime then, Zp not a field
(eg: Z_6 with 2.3 CZ_6 when, 2x3 = 0 CZ_6 but a field is an ID)
We have the sequence:
Fz. Fz, Z_4, Fz, Z_c, Fz, Zg, Zq, Zw, Fn
(We will see that 3 fields Fr, Fg, Fq, ..., but these are not Zy, Zg, Zq)
Frangle:
$$x^4 + x + i \in F_2[x]$$

Claim: This is irreducible over Fz
Check for roots $0^4 + 0 + i = 1$ \Rightarrow no roots in Fz.
If $i + i + i = 1$ \Rightarrow no roots in Fz.
This gives that the only possible factorisation is as a product of 2 quadrotics
Moreover these 2 quadratics are themselves irreducible over Fz
The quadratics over Fz are
 x^2 x^{2+1} $x^{2} + x = x^{2} + x^$

$$x^{4}+1 \neq (x^{2}+x+1)^{2}$$

Irreducibility over Q

Lemma Gauss Lemma A polynomial with Z coefficients can be factorized into 2 factors with Z coefficients it can be factorized into 2 factorized into 2 factors with Q coefficients Theorem Eisenstein irreducibility Let $f = C_n x^n + C_{n-1} x^{-1} + \cdots + C_1 + C_0$ with the $c_i \in \mathbb{Z}$. Suppose also that \exists a prime p s.t (i) p divides co, c, ..., cn-1 (ii) pt cn (iii) $\rho^2 \neq c_0$ Then f is irreducible over Q. <u>Proof</u>: (via contradiction) Suppose f=gh with g,h e Q[z]. By Gauss Lemma, can assume that $g = a_{y}x^{T} + \cdots + a_{y}x + a_{0}$ $h = b_{sx}^{s} + \cdots + b_{r}x + b_{0}$ with ai, bi & Z. Then $c_0 = a_0 b_0$ $c_1 = a_0 b_1 + a_1 b_0$ $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$ $c_i = a_0 b_i + \cdots + a_i b_0$ $c_n = a_1 b_3$

$$p|c_{0} \Longrightarrow p|a_{0}b_{0}$$

$$\implies p|a_{0} \text{ or } p|b_{0}$$
But $p^{2}+c_{0} \Longrightarrow can't have both.$
Assume p|a_{0} but pfb_{0}
Now $p|c_{1} \Longrightarrow p|c_{1}-a_{0}b_{1}$

$$\implies p|a_{1}b_{0}$$

$$\implies p|a_{1} \text{ or } (p|b_{0} \times \dots)$$

$$\implies p|a_{1} \text{ or } (p|b_{0} \times \dots)$$

$$p|a_{0}, p|a_{1}, \dots, p|a_{1}$$

$$\implies p|a_{1}b_{5}$$

$$\implies p|c_{n} \times \dots$$
Example: $x^{1^{2}}+125x-35x^{2}+20x^{2}-5x^{2}+100x+15$
ivreducible over Q with p=5

Moval: if f irreducible over R. then, deg(f) \leq 1
if f irreducible over R. then, deg(g) ≤ 2
Whereas over Q \exists polynomials of arbitrarily large degree that are irreducible

The reduction test

About reducing coefficients modulo a prime Let IFp = {0,1,…, p-1}? with +, x mod p (prime) be the field with p elements and

$$\sigma_{p}(a) = a \mod p$$

 $\sigma_{p}^{*} : \mathbb{Z}_{p}[x] \longrightarrow \mathbb{F}_{p}[x]$

 $\sigma_{\mathsf{P}}:\mathbb{Z}\longrightarrow \mathbb{F}_{\mathsf{P}};$

Extend this to

$$\sigma_{p}^{*}\left(\sum_{i=0}^{n}\sigma_{i}x^{i}\right) = \sum_{i=0}^{n}\sigma_{p}(a_{i})x^{i}$$

Example:
$$p=5$$

 $f = 8x^{5}-6x-1 \in \mathbb{Z}[x]$
 $\sigma_{s}^{*}(f) = 3x^{2} + 4x + 4 \in F_{s}[x]$
Theorem Reduction test
 $f \in \mathbb{Z}[x]$ and p a prime s.t
(i) deg $\sigma_{p}^{*}(f) = deg(f)$
(ii) $\sigma_{p}^{*}(f) = deg(f)$
(iii) $\sigma_{p}^{*}(f)$ irreducible over F_{p}
Then, f irreducible over F_{p}
Then, f irreducible over F_{p}
Then, f irreducible over \mathbb{Q}
Example: $f = 8x^{3}-6x-1$
 $(p=2): \sigma_{s}^{*}(f) = 1$ fails (i)
 $(p=3): \sigma_{3}^{*}(f) = 2x^{3}+2 \in F_{3}[x]$ has root in F_{3}
 $(p=5): \sigma_{s}^{*}(f) = 3x^{3}+4x+4 \in F_{3}[x]$ as deg ≤ 3 , suffices to check has no roots in $F_{s} = \{0,1,2,3,4\}$
has none \Longrightarrow irred over F_{5}
 $\Longrightarrow 8x^{3}-6x-1$ irred over Q

2. Fields and Extensions

Alternative definition of fields

Definition Field

- A field is a set F with 2 binary operations, + and x such that for any $a, b, c \in F$
 - 1) F is an Abelian group under + ;
 - 2) F\{0} is an Abelian group under X
 - 3) The two operations are linked by the distributive law

Definition Field

- A field is a set F with 2 binary operations, + and x such that for any a, b, c F
 - 1) F is a commutative ring under + and X;
 - 2) $\forall a \in F \setminus \{0\}$, $\exists an a' \in F$ with $a \times a' = 1 = a' \times a$

Field Extensions

Definition Extension Let F≤E be fields Then F is a subfield of E E is an extension of F If β∈E, then write F(β) for the smallest subfield of E that contains F and β so in particular F(β) is an extension of F. In general, if β1..., βk∈E, define F(β1..., βk) = F(β1..., βk-1)(βk)

<u>Note</u>: $F \subseteq F(\beta)$ is an extension

Say F(B) is the result of adjoining B to F

Similarly $F(\beta_1, \beta_2, ..., \beta_k)$

If $E = F(\beta)$ for some β then E is a simple extension,

Example: $Q \leq R$, $Q \leq C$, $R \leq C$

R⊆R(i)

(notice: $R(i) \leq C$; on the otherhand,

$$\implies \mathbb{R}(i) = \mathcal{C}$$

<u>Example</u>: $Q \subseteq Q(J_2)$ a simple extension Firstly $\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ and $b \in \mathbb{Q}(\sqrt{2})$ for any $b \in \mathbb{Q} \implies b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ fields closed under x Similarly $a + b\sqrt{2} \in Q(\sqrt{2})$ fields closed under + Thus the set $F = \{a + bJz : a, b \in \mathbb{Q}\} \subseteq \mathbb{Q}(Jz)$ IF is a field in its own right using the usual addition and multiplication of complex numbers For example, inverse of atbJz is given by $\frac{1}{a+b\sqrt{2}} \times \frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{a}{a^2-2b^2} = \frac{a}{a^2-2b^2} = \frac{b}{a^2-2b^2}$ We have $Q \subseteq F$ and $f_2 \in F$. Since $Q(f_2)$ is the smallest field having this property $\Longrightarrow Q(f_2) \subseteq F$. Hence $\mathbb{Q}(\sqrt{2}) = \mathbb{F} = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ Example: $Q(f_2, f_3)$ is also a simple extension $Q(f_2, f_3) = Q(f_2 + f_3)$ proof: $(2, (3 \in \mathbb{Q})(\mathbb{I}_2, \mathbb{I}_3) \Longrightarrow (2 + \mathbb{I}_3 \in \mathbb{Q})(\mathbb{I}_2, \mathbb{I}_3)$ $\implies \mathbb{Q}(\mathfrak{l}_2 + \mathfrak{l}_3) \leq \mathbb{Q}(\mathfrak{l}_2, \mathfrak{l}_3)$ On the otherhand $(f_2 + f_3)^3 = (f_2)^3 + 3(f_2)^2(f_3) + 3(f_2)(f_3)^2$ = 2(2 + 6(3 + 9(2 + 3(3

= 1152 + 953

Since $(\sqrt{2} + \sqrt{3}) \in \mathbb{Q}(\sqrt{2},\sqrt{3})$ we get

$(11 \int_2 + 9 \int_3) - 9(\int_2 + \int_3) \in Q(\int_2 + \int_3) \Longrightarrow 2 \int_2 \in Q(\int_2 + \int_3)$

$\implies \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}) \qquad \text{since } \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}), \sqrt{2}(2\sqrt{2})$

Similarly v3 e Q(52, 53)

 $\implies Q(\mathfrak{l}_2,\mathfrak{l}_3) \subseteq Q(\mathfrak{l}_2+\mathfrak{l}_3)$

Algebraic elements

Definition Algebraic

Let F E be an extension of fields and a E

d E is algebraic over F when:

 $a_n \alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_n \alpha + a_0 = 0$

for some a, a, ..., a, EF. In otherwords & is a root of some f EF[x]

Definition Trancendental

If a is not the root of any polynomial fEF[x] with F-coefficients then we say F is trancendental over F

<u>Example</u>:

- $\sqrt{2}$ algebraic over \mathbb{Q} (roots of χ^2 -2)
- π NOT algebraic over Q ← transcendental
- π is algebraic over $Q(\pi)$ (roots of χ - π)
- The roots of $x^2 + 4x + 2$ are algebraic over Q

3. Quotients

Definition of Ideals

- Definition Ideals of a ring
 - Let R be any ring and I ≤ R be any subset
 - The subset I is an ideal if
 - i)0∈I
 - ii)aeI ⇒-aeI
 - iii) a,b∈I ⇒ a+b∈I
 - iv) a∈I, r∈R ⇒ ar, ra∈I

Principal Ideal

Definition, Principal ideal

- The ideal
- $aR = \{ar : r \in R\}$
- is called principal ideal (generated element a ER)

Principal Ideal Domain

Definition Principal Ideal Domain A principal ideal domain (PID) is an integral domain (ID) where every ideal is principal

Theorem

- Let F be any field. Then the ring
- is a principal ideal domain

F[x]

An ideal in
$$F[x]$$
 is a set of the form

$$\langle f \rangle = \{ fg | g \in F[x] \}$$

for some fixed polynomial f

Example:
$$x^2 - 2 \in Q[x]$$
 and ideal
 $\langle x^2 - 2 \rangle = \{p(x^2 - 2) : p \in Q[x]\}$
Simplifying $x^3 - 2x + 15 + \langle x^2 - 2 \rangle$;
 $x^3 - 2x + 15 = x(x^2 - 2) + 15 \implies x^3 - 2x + 15 + \langle x^2 - 2 \rangle = [x(x^2 - 2)] + 15 + \langle x^2 - 2 \rangle$
 $= 15 + \langle x^2 - 2 \rangle$
Example: $F_2[x]$ and ideal $\langle x \rangle$
There are only 2 cosets
 $0 + \langle x \rangle$ and $1 + \langle x \rangle$
Suppose we have $g + \langle x \rangle$ and
 $\blacktriangleright g$ has no constant term (namely 0 since $F_2 = \{0, 1\}$)
 $g + \langle x \rangle = 0 + \langle x \rangle = \langle x \rangle$
(\leq): $f \in g + \langle x \rangle \implies f = g + px$
 $no constant term,$
 $\implies f$ has no constant term,
 $\implies f \in \langle x \rangle$
(2): $f \in \langle x \rangle \implies f - g \in \langle x \rangle$
 $f = g + (f - g) \in g + \langle x \rangle$

$$g+\langle x\rangle=1+\langle x\rangle$$

Reminder of Cosets

Let (G,+) be any Abelian group, H≤G subgroup

Definition Coset

(G,+) be any Abelian group, H≤G subgroup. Then

 $\forall a \in G, a + H = \{a + x | x \in H\} \leq G$

is a coset of a relative to H.

a + H \$ representative

Properties of Cosets

Lemma

In

(i)
$$a + H = b + H \iff a - b \in H$$

(ii) $a + H = b + H \iff (a + H) \cap (b + H) \neq \phi$

(iii) a+H = H = O+H ⇐⇒ a∈H

Proposition

Proof:

$$\forall h \in H, h = hgg = ghg \forall g \in G$$

Factor Group

Definition Factor Group

Let
$$(G, +)$$
 be any Abelian group, $H \le G$ subgroup.
 $G_{/H} = \{a+H: a \in G\} = \{set of all cosets in G relative to H\}$

Factor/Quotient group

Factor Rings

Now let R be any ring \implies (R,+) is an Abelian group.

Let I≤R be any ideal of R. Then

▶

$$I \subseteq R$$
 is a subgroup relative to $f \Longrightarrow$ we have R/T

Consider factor set R_{I} with binary operation

$$Addition: (a+I)+(b+I) = (a+b)+I$$

Proposition

are well-defined

is called the coset of <f> with representative g

Proposition

$$(R/_{I}, +, x)$$
 is a ring with $+, x$ defined above

Fundamental Theorem of Homomorphisms for Rings

Theorem

Let R,S be any rings and
$$\alpha: R \longrightarrow S$$
 be a homomorphism

Then $kera \in R$ an ideal of R and $Im \alpha \leq S$ is a subring of S and

4. Field Contruction

Proper Ideals

De	fin	iti	on,	Pr	'ope	Υ.	Ld	eals	
					•				
	Le	ł	R	be	anu	4 Y	ina		
							1		

An ideal of R is proper if I # R

Maximal Ideals

Definition Maximal Ideals

An ideal M of R is maximal if

(i) M is proper, M≠R

(ii) For any ideal I⊆R

M⊆ISR ⇒ I=M or I=R

Properties of Maximal Ideals

Theorem

 $M \text{ maximal} \iff R/M \text{ is a field}$

Now consider R=F[x]. F a field and firreducible over F

Let $\langle f \rangle \leq I \leq F[x]$ for an ideal I. Then

$$I = \langle v \rangle \Longrightarrow \langle v \rangle \geq \langle v \rangle$$

⇒ hlf

Since f irreducible \Longrightarrow h constant c \in F or h=cf

But <cf>=<f>

On the otherhand, any polynomial g can be written as a multiple of c by setting

$$g=c(c'g) \Longrightarrow \langle c \rangle = F[x]$$

Thus if f is an irreducible polynomial
$$\Rightarrow \langle f \rangle$$
 is maximal
Conversely if $\langle f \rangle$ is maximal and hlf $\Rightarrow \langle f \rangle \leq \langle h \rangle$ so that by maximality
 $\langle h \rangle = \langle f \rangle$ or $\langle h \rangle = f[x]$
Note that $\langle f \rangle = \langle h \rangle \Leftrightarrow h = cf$ for some constant ccf (prove!)
Similarly if $h = F[x] \Leftrightarrow h = c$ some constant (prove!)
Hence f irreducible over F. Thus
ideal $\langle f \rangle$ is maximal $\Leftrightarrow f$ irreducible
Corollary
 $F[x]/\langle f \rangle$ is a field $\Leftrightarrow f$ is an irreducible polynomial over F
Example: x^2+1 irreducible over $R \Rightarrow R/\langle x^2+1 \rangle$ a field.
Constructing fields
Example: a field of order 4
idea: $f \in F[x]$ irreducible over F
 $\Rightarrow F \leq F[x]/\langle f \rangle \ll new$ field
Start with $F_2 = \{0,1\} + .x \mod 2$ and
 $x^2 + x + 1 \in F_2[x]$ irreducible over F_2 . $0^2 + 0 + 1 = 1$
with elements: $\{g + \langle x^2 + x + 1 \rangle = g(x^2 + x + 1) + y + \langle x^2 + x + 1 \rangle$
 $= y + \langle x^2 + x + 1 \rangle = q(x^2 + x + 1) + y + \langle x^2 + x + 1 \rangle$
 $= (ax + b) + \langle x^2 + x + 1 \rangle = (x)$
Notation: $(a=1, b=0) + \langle x^2 + x + 1 \rangle = f = a$

Then

$$(*) = (a + \langle x^{2} + x + 1 \rangle) (x + \langle x^{2} + x + 1 \rangle) + (b + \langle x^{2} + x + 1 \rangle)$$

$$= a \ll + b$$

$$F_{4} = \{0, 1, \measuredangle, \uphi + 1^{2} \text{ so that e.g}$$

$$(a + 1)^{2} = (a + 1)(a + 1) = a^{2} + a + a + 1$$

$$= x^{2} + 1$$
Magic algebraic rule: $af + \langle f \rangle = \langle f \rangle$

$$(x^{2} + x + 1) + \langle x^{2} + x + 1 \rangle = \langle x^{2} + x + 1 \rangle$$

$$\implies a^{2} + a + 1 = 0$$

$$\implies a^{2} + 1 = 0$$

$$\implies$$

This gives

 $F_{p}[x]/\langle f \rangle = \left\{ a_{d-1} x^{d-1} + \cdots + a_{o} \right\} a_{i} \in F_{p}$

Example: Field with 81 elements $=q^{2}=3^{4}=(3^{2})^{2}$ <u>Step 1</u>: Construct $\mathbb{F}_{3^2} = \mathbb{F}_{q}$ $f = x^{2} + 1 = 1$ $f = x^{2} + 1 = 1$ $1^{2} + 1 = 2$ no roots ⇒ irred over F3 $2^{2}+1=2$ quadratic \implies $\mathbf{F}_q = \{a + b\alpha : a, b \in \mathbb{F}_3\}$ with rule $\alpha^2 + 1 = 0 \implies \alpha^2 = 2$ $= \{0, 1, 2, \alpha, \alpha+1, \alpha+2, 2\alpha, 2\alpha+1, 2\alpha+2\}$ <u>step 2</u>: Construct Fg2=F81 $F_q[y] \ni g = y^2 + y + \alpha$ Check has no roots in IFq: $g(a+1) = (a+1)^2 + (a+1) + a$ $= \chi + 1$ Similarly for other 8 $F_{g_1} = \{A + BB : A, B \in F_q^3 \text{ and } \beta^2 + \beta + \alpha = 0 \implies \beta^2 = 2\beta + 2\alpha$ = $\{a+ba+c\beta+da\beta: a,b,c,d\in \mathbb{F}_3\}$ and $a^2=2$, $\beta^2=2\beta+2a$ Example: Field of order 729 $729 = 3^6 = (3^2)^3$ 1) Consider the polynomial $f = \chi^2 + \chi + 2 \in \mathbb{F}_3[\chi]$ Has no roots: ▶ 0²+0+2=2 ▶ $1^2 + 1 + 2 = 1$ > ⇒ f is irreducible $\blacktriangleright 2^2 + 2 + 2 = 2$ $\Rightarrow \mathbb{F}_{q} = \mathbb{F}_{3}[x]/\langle x^{2}+x+2\rangle.$ Let $\alpha = x + \langle x^2 + x + 2 \rangle \implies F_q = \{a\alpha + b: a, b \in F_3\}$ with rule $\alpha^2 = 2\alpha + 1$

```
Now let X be a new variable and consider the polynomials \mathbb{F}_{q}[X] over \mathbb{F}_{q}.
In this new variable, consider polynomial
                       g = X^{3} + (2\alpha + 1)X + 1
```

5. Constructibility

Constructing in C

There are 2 constructions in C. For Z, w E C

line through Z,w circle centered at Z passing through w

2

ພ

Definition Constructible

2

A $z \in C$ constructible $\iff \exists$ a sequence

 $0, 1, 2, 2, 2_1, 2_2, \cdots, 2_k = 2$

Each zj obtained from earlier numbers in the sequence in one of the following 3 ways

with p,q,r,s<j

Given 0, 1, i for free so they are indisputably constructible. The reasoning is if you stand on a plane without co-ordinates, then your position can be taken as 0.

Declare a direction to be the real axis and a distance along it to be 1.

Construct a perpendicular bisector of segment -1 to 1 and then measure a unit distance along to get i

We have 4 other constructions


```
G is a subfield of C
```

Proof:

Second: if
$$z, w \in C$$
 then
 $z+w = (Re(z) + Re(w)) + (Im(z) + Im(w))i$
 $zw = (Re(z)Re(w) - Im(z)Im(w)) + (Re(z)Im(w) + Im(z)Re(w))i$
 $\frac{1}{z} = \frac{Re(z) - Im(z)i}{Re(z)^2 + Im(z)^2}$
So that for example if $z, w \in \zeta$
 $\implies Re(z), Re(w), Im(z), Im(w) \in \zeta \cap R$
 $\implies Re(z) + Re(w), Im(z) + Im(w) \in \zeta \cap R$
 $\implies Re(z+w), Im(z+w) \in \zeta \cap R$
 $\implies Re(z+w), Im(z+w) \in \zeta \cap R$

Similar for 2w, -2, <u>1</u> e G

6. Vector Spaces and Degrees

Definition of a Vector Space

Definition, Vector Space Let F be a field (usually R or C). A vector space over IF is a set V together with binary operations vector addition, scalar multiplication, $\forall x \forall \longrightarrow \forall$ $F \times V \longrightarrow V$ $(u,v) \mapsto (u+v)$ $(\alpha, v) \mapsto \alpha v$ (A1) commutativity over addition. utv=vtn Yuvev (A2) associativity over addition. $u+(v+w) = (u+v)+w \forall u_1v_1w \in V$ (A3) O vector 3 QEV such that Qtv=v VveV (A4) Inverse Given any vev, $\exists -v \in V$ with (-v) + v = Q(MI) Distributivity $\alpha(u+v) = \alpha u + \beta v \quad \forall \alpha \in F, u, v \in V$ (M2) Scalar Multiplication $\alpha(\beta v) = (\alpha \beta) v \quad \forall \alpha, \beta \in \mathbb{F} \text{ and } v \in V$ (M3) Distributivity $(\alpha + \beta)v = \alpha v + \beta v \quad \forall \alpha, \beta \in \mathbb{F}, v \in V$ (M4) Multiplicative Identity $1v = v \quad \forall v \in V \quad (where \ 1 \in \mathbb{F} \text{ is the usual } 1)$ A vector is an element of a vector space

► Given a vector space V over a field IF, any delF is a scalar

Note

i) Being binary operation implies V is closed under linear combination

Vu, ve IF and any delf, utveV, ave V

ii) Axioms A1 - A4 together with binary operation addition is an abelian group

Linear Combination

Definition Linear Combination

Given vectors $\underline{v}_1, \ldots, \underline{v}_q \in V$ and scalars $\alpha_1, \ldots, \alpha_q \in \mathbb{F}$, the sum

$$\alpha_1 \underline{y}_1 + \dots + \alpha_q \underline{y}_q = \sum_{j=1}^{\infty} \alpha_j \underline{y}_j$$

is called the linear combination,

Linear Dependance/Independence

Definition, Linear dependence
A collection of vectors
$$\mathcal{C} = \{V_1, ..., V_q\} \subseteq V$$
 is linearly dependent
if $\exists (\alpha_1, ..., \alpha_q) \in IF^q \setminus \{(0, ..., 0)\}$ s.t
 $\alpha_1 \underline{V}_1 + \cdots + \alpha_q \underline{V}_q = Q$

Otherwise, we say VI, ..., vy are linearly independent

Definition Linear independence

VI, ..., Vq are linearly independent if

 $\alpha_1 \underline{v}_1 + \cdots + \alpha_q \underline{v}_q = 0 \implies \alpha_1 = 0, \cdots, \alpha_q = 0$

Spans

Definition Span Let $\mathcal{C} \subset V$ be a non-empty collection of vectors. The span of \mathcal{C} denoted $Sp(\mathcal{C}_{e})$ is the set of all linear combination of \mathcal{C}_{e} $Sp(\mathcal{C}_{e}) = \{ \underline{u} \in \mathbb{F}^{n} | \underline{u} = \alpha_{1} \underline{v}_{1} + \dots + \alpha_{n} \underline{v}_{n} \text{ for some } \alpha_{1} \in \mathbb{F}, \underline{v}_{1} \in S \}$

By convention, $Sp(\phi) = \{ \underline{0} \}$

Basis

Definition Basis Let $S \leq V$ be a non-trivial $S \neq \{0\}$ subspace of V, A collection $B = \{ \forall i, \dots, \forall q \} \leq S$ forms a basis if i) $\forall i, \dots, \forall q$ is linearly independent ii) $sp(\forall i, \dots, \forall q) = S$

By definition,

basis of foy is p

Dimensions

Definition, Dimensions For any subspace $S \subseteq V$, we define dimension of S by dim(S) = #(basis of S) cardinality

Vector Space homomorphism

Vector space homomorphism is a linear map

Definition Linear Maps Let V, W be vector spaces over the same field F. A map $L: V \rightarrow W$ is called linear map if $L(\alpha \underline{u} + \beta \underline{v}) = \alpha L(\underline{u}) + \beta L(\underline{v})$ Va, BEF, Vu, XEV

In abstract algebra, linear maps are referred to as vector space homomorphism, since they like other homomorphisms, they are structure-preserving maps.

Therefore we denote the set of all linear maps from. V to W by

Hom(V,W)

Example: V=C is a vector space over F=R

 $\begin{pmatrix} a \\ b \end{pmatrix}$ "vectors" : a t bi e C

" scalars" c eR e F

basis: {1,i}

" vector + ": (a+bi)+(c+di) $\begin{pmatrix} a \\ b \end{pmatrix}+\begin{pmatrix} c \\ d \end{pmatrix}$

" scalar x" c (a+bi) c (a)

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ⇒ C a 2-dimensional vector space over R

Example: let FSE be an extension of fields

Then E is a vector space over F

"vectors" elements of E

"scalars": elements of F

"vectors t": + in E

scalar multiplication": product of an element of F with an element of E inside E

Degree of an extension

Definition Degree

Let FSE be an extension of fields

Consider E as a vector space over F and define degree of the extension to be the dimension of this vector space denoted
[E:F]

Call FSE a finite extension if the degree is finite

<u>Recall</u>: F a field

F[x] = polynomials with F-coefficients

 $f \in F[x]$

<u>ideal</u>: {f}= {fh: h ∈ F[x]}

<u>coset</u>: g+{f}={g+fh:heF[x]}

Properties:

(i) g+<f>=<f> ⇐> ge<f>
 (ii) gf +<f>=<f>

F[x]/<f> = { all cosets of <f>} = { g + <f> : g \in F[x]

 $F[x]/\langle f \rangle$ is a field $\iff f$ is an irreducible polynomial over F

Finally, the cosets

a+<f>

where a E F (i.e. g+ <f) with g a constant polynomial).

(by copy, ne mean isomorphic)

 $(a+\langle f \rangle)(b+\langle f \rangle) = ab+\langle f \rangle$ $(a+\langle f \rangle)+(b+\langle f \rangle) = (a+b)+\langle f \rangle$

i.e. have (writing F as well as this other version of F)

an extension of fields when f irreducible over F

Theorem

If f is irreducible over F then the extension
$$F \subseteq F[r]/(f)$$

has degree equal to degree of f

Proof:

Replace F by its isomorphic copy
$$\{a + \langle f \rangle\}$$
: $a + \langle f \rangle$?
Claim: $B = \{1 + \langle f \rangle, x + \langle f \rangle, ..., x^{d-1} + \langle f \rangle\}$ where $d = deg(f)$ a basis
Span: $g + \langle f \rangle = (qf + r) + \langle f \rangle$ deg $r < deg f$
 $= r + \langle f \rangle$
 $= (a_0 + a_1 x + \dots + a_{d-1} x^{d-1}) + \langle f \rangle$
 $= (a_0 + \langle f \rangle)(1 + \langle f \rangle) + (a_1 + \langle f \rangle)(x + \langle f \rangle) + \dots + (a_{d-1} + \langle f \rangle)(x^{d-1} + \langle f \rangle)$

an F-linear combination of B

<u>Linear independence</u>:

$$(a_0 + \langle f \rangle)(1 + \langle f \rangle) + \dots + (a_{d-1} + \langle f \rangle)(x^{d-1} + \langle f \rangle) = 0 + \langle f \rangle$$
$$\implies (a_0 + a_1 x + \dots + a_{d-1} x^{d-1}) + \langle f \rangle = \langle f \rangle$$

$$\Rightarrow a_0 + \dots + a_{d-1} \times^{d-1} \in \langle f \rangle$$
Everything in $\langle f \rangle$ has degree 2 d except 0

$$\Rightarrow a_0 + \dots + a_{d-1} \times^{d-1} = 0$$

$$\Rightarrow a_0 = 0, \ a_1 = 0, \ \dots, \ a_{d-1} = 0$$

$$\Rightarrow a_0 + \langle f \rangle, \ \dots, \ a_{d-1} + \langle f \rangle \text{ are } 0 \text{ in } F[x]/\langle f \rangle$$

Simple extensions

Theorem Simple extensions Let $F \subseteq E$ and $\alpha \in E$ algebraic over F. Then (1) \exists a unique $f \in F[x]$ that is monic, irreducible over F and has α as a root (2) $F(\alpha) \cong F[x]/\langle f \rangle$ (3) $F(\alpha) = \{a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_{d-1}\alpha^{d-1} \mid a_0, a_1, \dots, a_{d-1} \in F^2\}$ and d = deg(f). In particular $B = \{1, \alpha^2, \dots, \alpha^{d-1}\}$ is a basis for $F(\alpha)$ over F

Definition Minimum Polynomial The polynomial in (1) is called the minimum polynomial of a over F

Example: F=Q, d= √2

Then $f=x^5-2 \in \mathbb{Q}[x]$

- monic

- d a root

- irreducible over Q Eisenstein

 \implies f is the minimum polynomial of 512 over Q

 $\implies \mathbb{Q}(5\sqrt{2}) = \{a_0 + a_1 \sqrt{2} + a_2 (\sqrt{2}\sqrt{5})^2 + \cdots + a_4 (\sqrt{2}\sqrt{5})^4 \}, [\mathbb{Q}(\sqrt{2}\sqrt{5}) : \mathbb{Q}] = 5$

 $\frac{\mathsf{Example}}{\mathsf{Example}} = f = x^2 + 1 \in \mathbb{R}[x]$

Then, f has a root ieC is monic, irreducible over R f minimal polynomial of a over R

 $\implies \mathbb{R}(i) \cong \mathbb{R}[\mathbf{x}]/\langle \mathbf{x}^2 + \mathbf{i} \rangle$

where $R[x]/\langle x^{2}+1 \rangle = \{g+\langle x^{2}+1 \rangle : g\in R[x]\}$ where $g+\langle x^{2}+1 \rangle = q(x^{2}+1)+r+\langle x^{2}+1 \rangle$

where E has finite degree over F and L has finite degree over E, then
[L:F]=[L:E][E:F]

(write proof later)

7. Constructibility II

Thus for p-gon to be constructible

$$p-1=2^{n} \implies p=2^{n}+1$$
Aside:
m odd then,

$$(x^{n}+1)=(x+1)(x^{n+1}x^{n+2}+\dots+x+1)$$
so that if n=nk, m odd.

$$2^{n}+1=(2^{n})+1$$

$$=(2^{n}+1)((2^{n})^{n+1}\dots+2^{n}+1) \text{ not prime}$$
Hence $2^{n}+1$ to be prime, n can't have odd divisors $\implies n=2^{n}$
i.e. if p-gon constructible

$$p=2^{n}+1$$
S $\in C$ constructible $\implies [Q(S):Q]=p^{n}$

$$find minimal polynomial of deg = 2^{n}$$
Definition.
An, angle Θ is constructible iff you can construct
Ne know angles can always be bisected
Finally: angle Θ constructible iff cos Θ is constructible

$$q=2^{n}+1$$

$$\Rightarrow$$
 [Q(cos $\frac{7}{9}$): Q] = 3 NoT a power of 2

8. Splitting Fields

Definition Splits

If $f \in F[x]$ and $F \leq E$ an extension then f splits in E when

$$f = \prod_{i=1}^{deg(+)} (x - a_i)$$

. (1)

i=1

where a; E

By Corollary to Kronecker's theorem

If $\alpha_1, \alpha_2, \cdots, \alpha_d \in k$ roots of f then, $E = F(\alpha_1, \cdots, \alpha_d)$

Splitting field

Definition

$$F(a_1, a_2, \cdots, a_n) \subseteq E$$

the extension containing all roots of f is called the splitting field of f over F

Example: $f = x^2 + 1$ has splitting field Q(i, -i) = Q(i) over Q

Has splitting field R(i)=C over R

9. Groups Overview

1 O. Galois Groups

A symmetry or automorphism, of a field F is a map

 $\sigma: F \longrightarrow F$

that is a bijection and

 $\sigma(a+b) = \sigma(a) + \sigma(b)$

 $\sigma(ab) = \sigma(a)\sigma(b)$

i.e. an isomorphism to itself.

Example: Complex conjugation

0:℃→℃

 $z \mapsto \overline{z}$

 $\overline{z_1 + \overline{z}_2} = \overline{z_1} + \overline{z_2}$

 $\overline{Z_1Z_2} = \overline{Z_1} \overline{Z_2}$

reflect

automorphism

<u>Example</u>: F⊆C

Then, if $\underline{m} \in \mathbb{Q}$: $\sigma\left(\underline{m}\right) = \sigma\left(\frac{1+1+\dots+1}{1+1+\dots+1}\right)$ $= \sigma\left(1+\dots+1\right)$ $= \sigma\left(1+\dots+1\right)\sigma\left(\frac{1}{1+\dots+1}\right)$

$$= (\sigma(i) + \dots + \sigma(i)) \cdot \frac{1}{\sigma(i) + \dots + \sigma(i)}$$

$$= 1 + \dots + 1 \cdot \frac{1}{1 + \dots + 1}$$

$$= \frac{M}{n}$$
Galois Groups
Definition
If $F \leq E$ are fields. then write
$$Ga((E/F)$$

for the automorphism of E that fix F pointwise i.e.

σ(a)=a ∀a∈F

Exercise: Gal(E/F) is a group under composition of automorphism with the identity the identity the

written "id" and σ " the usual inverse map

Gal(E/F) the Galois group of E over F

Example: F=Q

 $E = Q(\sqrt{2}; i)$ basis $\{1, i\}$

Here $Q \subseteq Q(\sqrt{2}) \subseteq Q(\sqrt{2};)$

basis
$$\{1, \sqrt{2}\}$$
 \implies $\{1, \sqrt{2}, i, \sqrt{2}i\}$ basis for $Q(\sqrt{2}, i)$ over Q

 $\implies \mathbb{Q}(\sqrt{2}, i) = \{a + b\sqrt{2} + ci + d\sqrt{2}i : a, b, c, d \in \mathbb{Q}\}$

Then if $\sigma \in Gal(Q(J_2,i)/Q)$

 $\sigma(a+b\sqrt{2}+ci+d\sqrt{2}i) = \sigma(a)\sigma(i) + \sigma(b)\sigma(\sqrt{2}) + \sigma(c)\sigma(i) + \sigma(d)\sigma(\sqrt{2}i)$

= $a + b\sigma(\sqrt{2}) + c\sigma(i) + d\sigma(\sqrt{2})\sigma(i)$ fixes rationals, Q by definition of $Gal(O(\sqrt{2}i)/Q)$

 \Longrightarrow o completely determined by $\sigma(\sqrt{2})$ and $\sigma(i)$

This is a general fact

This is a general pact.

$$If F \leq F(\alpha_1, ..., \alpha_k) = E, then, \sigma \in Gal(E/F) is completely determined by
$$\sigma(\alpha_1), \dots, \sigma(\alpha_k)$$
For if $\{\beta_1, ..., \beta_n\}$ a basis for E over F, then σ is completely determined by its effect on β_i .
The proof of down law gives

$$\beta_i = \alpha_1^{i_1} \alpha_2^{i_2} \dots \alpha_n^{i_n}$$
a product of dj's so that $\sigma(\beta_i) = \sigma(\alpha_i)^{i_2} \sigma(\alpha_i)^{i_2} \dots \sigma(\alpha_n)^{i_n}$ is in turn determined by $\sigma(\alpha_i)$'s
Example: Sometimes $Gal(E/F)$ can be compared by brute force
Consider $Q \leq Q(\omega)$ $\omega = \frac{-1}{2} + \frac{13}{2}i$
where $\omega^s = 1$
Find nin polynomial of ω over Q
 $Guess 2: 1 + 2 + 2^{2} \sqrt{}$
 $\Rightarrow Q(\omega) = \{a + b\omega : a, b \in Q\}$ and $\omega^2 = -1 - \omega$
If $\sigma \in Gal(Q(\omega)/Q)$ then σ determined by $\sigma(\omega)$ where
 $\sigma(\omega) = a + b\omega$ where $a, b \in Q$
 $(onsider \sigma(\omega^3))$
 $(i) \sigma(\omega^3) = \sigma(i) = 1$
 $(i) \sigma(\omega^3) = \sigma(\omega)^2 = (a + b\omega)^3$
 $= a^3 + 3a^2 b\omega + 3a(b\omega)^2 + (b\omega)^3$
 $= a^3 + 3a^2 b\omega + 3a(b^2(-1-\omega)) + b^3$
 $= (a^3 + b^3 - 3ab^2 + 1)$$$

 $3a^{2}b - 3ab^{2} = 0 \implies 3ab(a - b) = 0$

$$\Rightarrow a=0 \text{ or } b=0 \text{ or } a=b$$
Hence $a=0$ $\Rightarrow b=1$
 $b=0$ $\Rightarrow a=1$
 $a=b$ $a=1$
 $a=1$
 $a=b$ $a=1$
 $a=1$
 $a=1$
 $a=1$ $a=1$
 $a=1$
 $a=1$ $a=1$
 $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$ $a=1$
 $a=1$ $a=1$ $a=1$ $a=1$
 $a=1$ $a=$

This gives

Corollary

-<u>|</u> 2

If a algebraic over F with minimum polynomial f, then $\exists \sigma : F(\alpha) \longrightarrow F(\alpha)$ an isomorphism (i.e. an automorphism) with

$$\sigma(\alpha) = \beta \iff \beta$$
 is a root of f that is contained in $F(\alpha)$

Moral: Automorphisms of F(x) permute the roots of f, the min poly of x

We get
$$\sigma \in Gal(Q(w)/Q)$$
 iff $\sigma(w)$ is one of these roots that is in $Q(w)$
This gives $\sigma(w) = w$ or w^2

As
$$Q(w) = \{a + bw: a, b \in Q\}$$
, thus

Example: $\alpha = 3\sqrt{2} \in \mathbb{R}$. What is $Gal(Q(\alpha), Q)$

.

dw

x w²

> X

with roots d, dw, dw² where

$$w = -\frac{1}{2} + \frac{1}{3}$$

But $dw, dw^2 \in \mathbb{C} \setminus \mathbb{R}$ but $\mathbb{Q}(d) \subseteq \mathbb{R}$ so that

$$\alpha \omega, \alpha \omega \notin \mathbb{Q}(\alpha)$$

Thus a
$$\sigma \in Gal(Q(\alpha)/Q)$$
 can only send α to α
As $Q(\alpha) = \{a + b\alpha + c\alpha^2 : a, b, c \in Q^3\}$ this gives $\sigma = id$
 $Gal(Q(\alpha)/Q) = \{id\}$

Order of Galois group

Corollary Order Corollary

Let f f F [x] and E the splitting field of f over F. Moreover the roots of are distinct. Then: Gal(E/F)| = [E:F]

<u>This formula</u>: E and F are fields, hence rings and E is a vector space over F ; also Gal(E/F) is a group of automorphisms

Example: Gal (Q(x)/Q)

≪= 3√2

On the otherhand, $Q \subseteq Q(\alpha)$ is an extension of degree = deg(x³-2)

j.e. [Q(x):Q]=3

The splitting field of x^3-2 is $Q(\alpha, \alpha w, \alpha w^2) \neq Q(\alpha)$

Proposition

Let E be the splitting field over F of a polynomial with distinct roots. Suppose also that

 $E = F(\alpha_1, \dots, \alpha_m)$ for some $\alpha_1, \dots, \alpha_m \in E$

such that

 $[E:F] = \prod_{i=1}^{n} [F(\alpha_i):F]$

Then $\exists a \sigma \in Gal(E/F)$ with $\sigma(\alpha_i) = \beta_i \iff \beta_i$ is a root of the minimum polynomial of α_i over F

Example: From section 0, we computed automorphisms of Q(x, w) in an ad-hoc way.

 $\alpha = 3\sqrt{2}, \ \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$

Compute |Gal(Q(d, w)/Q)|

(i) Claim $Q(\alpha, u)$ is the splitting field of x^3-2 as the roots of this are $\alpha, \alpha u, \alpha u^2$

Then

 $\mathbb{Q}(\alpha, \alpha \omega, \alpha \omega^2) = \mathbb{Q}(\alpha, \omega)$

Further by proposition above, we can send α to any of α , αw , αw^2 and w to any of w, w^2 and get an automorphism.

Following this through with the vertices of a triangle gives 3 automorphisms with w mapped to itself and another 3 with w mapped to w^2

1 1. Fundamental Theorem of Galois Theory

We know that a complex number S is constructible if I a sequence of fields

 $Q \leq k_1 \leq k_2 \leq \cdots \leq k_m$

such that $Q(S) \leq K_m$ and each k_i is a degree 2 extension of k_{i-1} i.e. $[k_{i+1}, k_i] = 2$

To use this, we need to understand all the fields sandwiched between Q and $Q(\delta)$

The Galois correspondence gives us this understanding

Definition, Intermediate field

E

K,

F

K,

Let FSE be an extension of fields and FSKSE

Call such a K an intermediate field

The lattice of intermediate fields consist of all such K s.t K, SK2, then draw

i.e.

 $F \subseteq k_1 \subseteq k_2 \subseteq E$

compare with lattice of subgroups in Lecture # 15)

Notation: Write I(E/F) for this lattice

If F⊆E with G = Gal(E/F)and I(G) the lattice of all subgroups of G and I(E/F) the lattice of intermediate fields Then (i) H a subgroup of G=Gal(E/F) then $E^{H} = \{ \lambda \in E : \sigma(\lambda) = \lambda \ \forall \sigma \in H \}$ is an intermediate field called the fixed field of H (ii) if k is an intermediate field then Gal(E/k) is a subgroup of G = Gal(E/F) (iii) The maps $\Psi: H \longrightarrow E^H$ and $\Phi: k \rightarrow Gal(E/k)$ are mutual inverses hence bijections $\bigcup . \mathcal{I}(G) \rightleftharpoons \mathcal{I}(E/F) : \Phi$ that reverse order i.e. $H_1 \subseteq H_2 \xrightarrow{\Psi} E^{H_2} \subseteq E^{H_1}$ $k_1 \leq k_1 \xrightarrow{\Psi} Gal(E/k_1) \leq Gal(E/k_2)$ (iv) The degree of $E^{H} \subseteq E$ is equal to the order of [H] or the degree of $F \subseteq E^{H}$ is equal to the the index [G:H] Schematically 2(G)G Ψ: Y→E^Υ $\mathfrak{a}(\mathsf{E}/\mathsf{F})$ $_{p}H_{2} = Gal(E/k_{2})$ Galois Correspondence k,= E[#] H = Gal(E/k) $\overline{\Phi} \colon X \to \overline{Gal}(E/x)$ k2=E^{H2}

 $\begin{bmatrix} E^{H_1} \\ E^{H_2} \end{bmatrix} = \eta = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}$

Why upside down? If $H_1 \in \mathcal{Z}(G)$ then, $E^{H_1} = \{\lambda \in E \mid \sigma(\lambda) = \lambda \forall \sigma \in H_1\}$ And $H_1 \subseteq H_2$ then, E^{H_2} are these elements fixed by all the $\sigma \in H_2$.

Thus E^{H2} is the result of imposing more conditions on E^{H2}. hence smaller Example: F=Q $E = Q(3\sqrt{2}, -1/2 + \sqrt{3}/2i)$ d =2 W=1 Remember x-2 has roots 24 X dw2 Consider Gal(Q(α, ω)/Q); suppose that $\sigma, z \in Gal(Q(\alpha, \omega)/Q)$ such that σ(ພ) - ພ $\sigma(\alpha) = \alpha \omega$ τ(w)=N² C(d)=d $\Rightarrow \{id, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau^2\} \longrightarrow (*) \text{ are also in Gal}(Q(d, u)/Q)$ $\sigma^2(\alpha) = \sigma(\sigma(\alpha))$ $= \sigma(\alpha \nu) = \sigma(\alpha) \sigma(\nu) = \alpha \nu \cdot \nu = \alpha \nu^2$ Thus (*) gives 6 distinct elements of Gal $(Q(\alpha, \omega)/Q)$ Moreover from order corollary, we have $|G_{\alpha}|(Q(\alpha, \omega)/Q)| = [Q(\alpha, \omega) : Q]$ Recall: $Q(\alpha, \omega) = Q(\alpha, \alpha \omega, \alpha \omega^2)$ the splitting field of $\chi^3 - 2$. Also $\mathbb{Q} \subseteq \mathbb{Q}(a) \subseteq \mathbb{Q}(a, u)$ basis {1,N} basis { 1, x, x } \Rightarrow {1, α , α^2 , ω , $\alpha \omega$, $\alpha^2 \omega^2$ basis for Q(α , ω) over Q Thus Gal $(Q(\alpha, \omega)/Q) = \{id, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$

1 1. (Not) Solving Equations

You know: $ax^2 + bx + c$ has roots $-b \pm \sqrt{b^2 - 4ac}$

Can you do this in general ???

Radical Extension

Definition,

A extension $Q \subseteq E$ is a radical when \exists a sequence of simple extensions

$$\mathbb{Q} \subseteq \mathbb{Q}(\alpha_1) \subseteq \mathbb{Q}(\alpha_1, \alpha_2) \subseteq \cdots \subseteq \mathbb{Q}(\alpha_1, \cdots, \alpha_k) = \mathbb{E}$$

where each d; is s.t $\alpha_i^{m_i} \in \mathbb{Q}(d_1, ..., d_{i-1})$ for some power $m \in \mathbb{Z}^{20}$

i.e. x; is an m;-th root of an element of Q (x1,..., xn;)

Example:

$$\mathbb{Q} \subseteq \mathbb{Q}(\overline{12}) \subseteq \mathbb{Q}(\overline{12}, \overline{35}) \subseteq \mathbb{Q}(\overline{12}, \overline{35}, \overline{\sqrt{2}+35})$$

Definition Solvable by radicals

A polynomial is solvable by vadicals iff its splitting field is contained in some vadical extension

Example: any ax + bx + c ∈ Q[x] is solvable by radicals as its splitting field is contained in

 $\mathbb{Q}(\sqrt{b^2-4ac})$

a radical extension.

Similarly for cubics, quartics

Definition

The Galois group of f e Q[z] is the Galois group

Gal(E/Q)

where E is the splitting field of E

Theorem Galois $f \in Q[x]$ is solvable by radicals The Galois group of f is soluble S_n NOT soluble for $\eta \ge 5$ Example: x^5 -4x+2 not solvable by radicals (i.e. there is no formula for the roots of x^5-4x+2) For let $E = Q(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ be the splitting field of f with di. d2, ..., ds the roots. Then $\alpha_{1}^{2} - 4\alpha_{1} + 2 = 0$ If $\sigma \in Gal(E/Q)$ then, $\sigma(\alpha; 5-4\alpha; +2) = \sigma(0) \Longrightarrow \sigma(\alpha;)^{5} - 4\sigma(\alpha;) + 2 = 0$ $\Rightarrow \sigma(\alpha_i)$ is also a root of f \Rightarrow Gal(E/Q) permutes the roots of f \Rightarrow Gal (E/Q) is isomorphic to a subgroup of S5 Moreover $Q \leq Q(\alpha_1) \leq Q(\alpha_1, ..., \alpha_5) = E \implies [E:Q] = [E:Q(\alpha)][Q(\alpha_1):Q]$ where the min poly of α_1 over Q is $x^5 - 4x + 2$ (irred by Eisenstein) $\Longrightarrow [Q(a_i): Q] = 5$ \implies 5 divides [E:Q] splitting field We also know. |Gal(E/Q)| = [E:Q]Thus 5 divides Gal(E/Q) Thus 5 divides G Thus I oc Gal(E/Q) of form o=(a,b,c,d,e) where a,b,c,d,e < {x1, x2, x3, x4, x3}

Also complex conjugation t: 2 → Z is an automorphism of C and this restricted to E to give an element of Gal(E/Q)

In fact f looks like

i.e. three roots of are real hence two are complex conjugates Thus C is a permutation of (b1, b2) (C.f: every element of Sn can be written in terms of (12) (12...n)

Similarly every element of Ss can be written in terms of σ and $c \Longrightarrow Gal(E/Q) \cong S_5$ insoluble

f not solvable by radicals