


0. What is Galois Theory
Example : Symmetries of the solutions to a2 = 0

.

Leta=FER and w =-

Wo

&/ coltions to is

zw
?

2

w= 1

These solutions have "geometrical"symmetry ,

i
. e

.
S

,
t

,
Est to

,
(ts)2, (ts)= 1G

reflections rotations

These are NOT the symmetries we want.



Fields

Definition Field

A field is a set If together with binary operations
addition multiplication
#Fx If -> IF #x IF -> IF

(x , b) + x + B ( , B) + 23

satisfying the following axioms

Commutativity : VG
, BEF,

x + 3 = 3+2 <B = B

Associativity : Va
, B,EF ,

a + (b + r) = (x+ 3) + r a(pr) = (xp))

Identity elements : 10
,
1EFF

,
0F1 such that for all If,

2+ 0 = x 21 =2

Inverses : VLEFF
,
I-deF such that

n + (-x) = 0

VaeF
,
I delF such that

2x = 1

Distributivity : Va , B ,
rElk

,
we have

a(p+u) = 2B + 22

Subfield

Definition
A subfield of a field is a subset that is also a field under the same +

,
X

Example : QR C



Rings Recap

Definition Abelian Groups
An Abelian (commutative) group R is a set with a binary operation

+: RXR > R

(a , b)1ca + b

such that

(0)a + b = b +afa
,
beR

(1)a + (b+ c) = (a + b) + c

(2) 70R s. t Ota = at O VaeR

(3) VacR
,
I (a) ER s .ta+ (a) = (a) + a = 0

Notation : We write a + ( b) = a - b

Definition of a ving

Definition Ring

A ving R is a set with 2 binary operations
addition multiplication
RXR - R ; RXR + R ;

&

(a
,
b) i+ a+ b (a

,
b) axb

satisfying following axioms
i) (R , +) is an Abelian group

ii) (axb)xc = ax(bxc)fa
,

b
,
cR

iii) ax(b +c) = axb + axc fa
,

b
,R

(a + b)xc = axc + bxc Va,
b

,CER

Notation: a xb is represented by ab



Commutative Ring
Definition Commutative Ring
A ring is commutative if Va ,

beR,

axb = bxa

i

.e. multiplication is commutative

Subrings
Definition Subring
Let R be any ring (t ,

x)
,
let SER be any subset

We say S is called a subving of R if :

(a) DES Cidentity
(b) a

,
bes = - ae)

,
atbes

,
axbes Closure

Ring Homomorphism

Definition Ring Homomorphism

Let R
,

S be any 2 rings. A function

2 : R -> S

is a ring homomorphism if Va , beR

i) 2(a + b) = x(a) + x(b)
R

ii) x(axb) = x(a)xx(b)
R S

If R andS are vings with identity 1 and

x(1) = 1

then a is a unital ring homomorphism



Important !

Let R and s are vings with multiplicative identity 1ER and IgeS

If L :RS is an onto homomorphism (or isomorphism) then

< ((r) = Is

smallest subfields

Definition

F2D a subfield and BE.

Write F(B) to mean the smallest subfield ofC containing F and &

Here the smallest means if F' is any subfield ofI containing Fandp , then

F(p) - F

Example :

can also consider F(B, B2) etc... so that we have Q(x ,
w)

Then <
,weQ(x , w)

=> <xw = 2w
,

<xwXw =<w2 Q( ,
w)

i
. e. Q(x ,

w) contains the solutions to c-2 =0

Exercise : Q(x ,
w) is the smallest subfield of C containing these solutions

Loosely a symmetry of the solutions to r-z = 0 is a symmetry of Q(x , w) that respects the +, x

Example : Consider Q( , w) and Q(a , wh

Then: < ,weQ( ,
w) => x

, wxw= Q( , w)

=> Q(x ,
w) [Q(a ,

w)

L ,wQ( ,
w)= <

,
wixw = w4eQ( ,

w
2)

=> Q( ,
w) = Q(a ,

wa

Thus I a symmetry Q(a ,
w) Q(a ,

w)

which sends <11 and wi , wh

They awian



dr = dow : can w sa
Try at home

①( , w) = Q(aw ,
wh

swan
=> +st

,
ts

,
(ts)" etc all symmetries + X

But Galois Theory not geometry
G

Example : =z = 0

2 =3

=- +e,44
Zero Divisors

Definition Zero Divisors

Let R be a ving and R= 50]

An element aE R is a zero divisor if for some beR [03
,
by 0

ab = 0 or ba = 0

Integral Domains

Definition Integral Domains

An integral domain is a commutative ring with identity IER s . t

2D = 503

that is has NO non-trivial non-zero. Equivalently
NED(R) = R 403

Example

R = 2
,
[D(R) = 503 => Integral Domain



Remark : For any ring R ,
the condition 2D(R) = 503 is equivalent to either of

i) Va
,
beR [03

,
we have ab+0

ii) Va,
be R

,
the equality ab = 0 > a = 0 or b = 0

Example : I NOT an ID



1 Rings of Polynomials
Let R be any commutative ring with identity IER ,

1 fo

Leta be a formal symbol (xER)
A polynomial in s over R is a formal expression

f = do + a
,x + .. . + anx

where neI"= NUSO3 and do, ..., an ER.

ai is the co-efficient of si

conventions

(a)x"= 1 and x=x

(b) We can miss terms ac with a = 0 10 coefficient

For example : 1+* + 2x= 1 +2x

(c) We abbreviate 1xi = :

(a) A polynomial of form acc = al = a is called a constant polynomial
(e) Consider 2 polynomials

f =

do+ a
,
x + ... + ans

g
= by + b , x + .. - + bmxm

when m = n : f = g E do = bo ,
a

,
= b, . . . . an on

When n > m
, apply convention (b)

g
= b + b

,
x + b + .. . + bmxm+ 0x

+

+... + 0xh

=> bm + 1
= 0, . . .

., bn = 0

Similar for n>m .
Then for equality ,

we have

if man f =g) ap = bo ,
a

,
= b, .... An = bn , bn+ = bm = 0

if men + = g > do = bo
,

a
,
= b, ,

. . . . an = bn
, am

= = An = O



Ring of Polynomials
Definition

Let R be any commutative ring with identity IER ,
1 fo

Denote the set of all polynomials over R by
R[x]

Define addition and multiplication
Addition : (t)

Vf , g( R(x)

f = 90 + a
,
x + .... ans

m , ne No

g = bo + b , x + .. .. + bmxm

f + g
= c + 2,x + .. . + (x) ,

1 = max(n ,m)

=29itb ; if
imindme

it mcin
if n Jim (6 = do + bo)

By convention (e) , assume hom. If min , then append O terms to the "Shorter polynomial
f + g = (ao +bo(x + (a ,

+ b
,
)x + ... + (an + buk

Multiplication : (x)

fxg = (a0 + a
,x + ... . +anx")x(bo + b

,
x + .. . + bmxh) = do + d ,

x + .. + da+man
+ m

where for OK [M+ n

=
Note that

fxg = (ax + a
,
x + .. . +anx)(bo + b

,
x + .. . +b)

= abs + (aob ,
+a

,box ...... andmechtm



Proposition Ring of Polynomials
Let R be any commutative ring with identity IER ,

1 fo

Then
(R[x]

, +, x)

is a commutativeving with an identity .

Theorem

Let R be an integral domain

Then RIx] is an integral domain ,
i . e. Vf , geR[x] do

+g + 0 and deg(+g) = deg(f) + deg(g)
Example : Non-example
R = 26 , then (3a + 1)(2a + 1) = 5x + 1

Example : R commutative ving with1ER and cR and define

3 : R(a) , R

by Elance .. . + a
,
x + a) = an + .. . + a

,
c + a

Then Es is a ving homomorphism

3
,
(f +g) = 2(f) + 3

, (g)

3
, (fg) = 3

,
(f)z

, (g)

Division Algorithm
Theorem Division algorithm
Let f , ge RIx] s .

t

g
= bmam + .. + b

,
x + by (bi cr)

with bm having an inverse in R under X

ThenA unique q .
veRix) s .

t

f
=

qg + rdeg(r) < deg(g)



Remark :

If R = a field then the condition on g is just go
Roots and irreducibility

If f = Ance" + an +. . . + a
, a + a = R(X)

and cR
, then a is a root of f when :

anc + an ,
c+.. + a

, 3 +a = 0 (in R)

Example : c+ 1 is an element of &[x] ,
Qix]

,
RIX]

,
((X)

Has no roots inI , Q ,
I

Theorem Factor Theorem

feR[X] has a root ceR iff

f = ( -dg where geRIX)

Theorem

feR[X] where R is an integral domain.
Thenf has atmost deg(f) roots in R

Example : x + 3x + 2eXj(x) not an ID

i

= (x - 1)(x -2) => x = 1 or x = 2

and (x - 1) (x -2) = 3x2 (i . e
.

x = 4) (i . e. 4 root)

(x-1)(x -2) = 4x3(i . e . x = 5)

Definition
Let f . gER(x]
A non-trivial factorization of

f =gh
with g ,

hERIX) and deg(g) , deg (h) -1 Sequivalently deg(g), deg (n) < deg(f))



Definition reducible/irreducible

Call f reducible over field F if I a non-trivial factorization
Otherwise F is irreducible

Example :2+ 1 = (x - i)(x + i) in ([X]
· reducible over I

· s+ 1 irreducible over Q ,
I

Example : f = au + b (a ,
be F)

f is irreducible over F

For if figh with deg(g) , deg(n)
deg(f) = deg(g) + deg(h)) 1 + 1 ·X.

Theorem Fundamental theorem of algebra
If feCIX) is non-constant ,

then f has a root in DIX)

Consequence :

If deg(f)22 then f has a root cl hence

f = (x - cg = ((x]

i.e. f reducible over I

=> only linear polynomials irreducible over C

Example :

Irreducible over F I having no roots in F

f has no roots inF f is irreducible over F

eg
: x4 + 2x2+ 1 = Q(x)

= (a+ 1) reducible over Q

and clearly no roots in Q

f irreducible overF f has no roots in F

eg
: ac + be F[X) irreducible over F



but has root--ba

Proposition

if feF(x] with deg(f)-

f has no roots inF firreducible over F

Proof : both ways contrapositive

# : Suppose f has a root . We will show t is not irreducible.

A acF s .tf(a) = 0
.
Let us divide by (x-a) with a remainder

+= (x- alq + v whereor
but deg)
non-zero const

-

0 = f(a) = 0q + v = v= 0 v is a const

2
,

3 = degt = degka) + degg = 1
,2/ tis not irreducible

(E) : Suppose+ is not irreducible. Need to prove + has a root

So f = uv
,

u ,
v are non-constant polynomials

2
,
3 = deg(t) = deg(u) + deg(v) = deglul = 1 or degl-

suppose degu= 1 => n = co+d
,
where c + 0= F

f = (xx +d)v = c(x + id) => x = i'd
,
then x is a root

Similar for deg v = 1
⑭

Field Xp

We need another field to play with .

Seen that (In+, x) aring
In = 50 ,

1
, 2

, ... n - 13

If n =

p prime , then Ip a field
hint : if Relp with 170 ,

then Eaclp s .
t

i
i . e. ak = 1 in Lp

ak = 1(modp) I



Notation: Write p from now on ,
instead of Ip

If nt prime, then Ip not a field

leg : 26 with 2
,32s when 2x3 =02 s but a field is an ID)

We have the sequence
:

#2.g , 24.g . ]j.q i 28..q . Zio . Fi

(We will see that I fields #4. E
y ,

Eg
,

.... but these are not 24 . 28 . Ral

Example : c" + x +1z(x]

claim : This is irreducible over #2

check for roots OPOT = no roots in

This gives that the only possible factorisation is as a product of 2 quadratic
Moreover these 2 quadratics are themselves irreducible overE2

The quadratics over E are

2 i+1 + x r+ x + 1

u ↑ ↑ ↑
2x(x+ + 2a(x+ 1) 8+o + 1

P+ 1 + 1
3 no roofs in F2 and deg?

=> irreducible over2

All we have left is retu + 1 but

x4+ 1 f(x+ x+ 1)

=> irreducible over #2



Irreducibility over Q

Lemma Gauss Lemma

A polynomial with I coefficients can be factorized into 2 factors with 2) coefficients

#
it can be factorized into 2 factorized into 2 factors with Q coefficients

Theorem Eisenstein irreducibility
Let

f = Gnx" + ( ,
x" +... + c + c

with the citI. Suppose also that I a prime p s.
t

(i)
p divides Co, , .... En-

(ii) pton

(iii) pat c

Then f is irreducible over Q

Proof : (via contradiction

suppose f =gh with g , heQ[a) .

By Gauss Lemma , can assume that

g = arc + .. + a
, x + a

h = ba + - .. + b
, a + bo

with a b. 2. Then

C = aobj

c = a
-

b
,
+ a

, b

- = abc + a
,
b

,
+ a

, b

:

-

=asbit. + aib,

-

<n= arbs



p= pab
=> pdo or p b

,

But petco -> can't have both.

Assume plac buto
Now pla => pla -aob)=> pla ,

bo

=> pla , or lo X
=> pla ,

... keep going...

plas , pla , ... plan
=> plarbs
=> planX

⑧

Example : c

"
+ 125x - 35x4 + 20x - 52 + 100n + 13

irreducible over Q with p = S

Moral : if firreducible overI
, then deg (f) - I

if f irreducible over R . then deg (g) 2

Whereas over Q A polynomials of arbitrarily large degree that are irreducible

The reduction test

About reducing coefficients modulo a prima

Let Fp = 50
,

1
, ..., p-13 with +, X mod p(prime) be the field with p elements and

Up: < Ep ;

op(a) = a mod p
Extend this to

op
*: [pic) · Epic)

op
* (iii) = Zoplait



Example :
p = 5

f = 8x - 6x - 1 = [(x)

o
* (f) = 3 + 4x + 4 = (g[x)

Theorem Reduction test

felix] and p a prime s .
t

(i) degop
* (f) = deg(f)

(ii) Op
* (f) irreducible over #p

Then f irreducible over Q

Example : f = On-Ga-1

(p = 2) : 0z
* (f) = 1 fails (i)

(p = 3) : o
* (f) =2 + 2 Ez(a) has root in #

(p =3) : Og
* (f) = 3n+ 4a + 4 #z(n) as deg -3 , suffices to check has no roots in IFs = 50

,
1
,

2
,

3
, 43

has none -> irred over Is

=> Bi-Ga-1 irred over Q



 2. Fields and Extensions
Alternative definition of fields

Definition Field

A field is a set F with 2 binary operations ,
I and X such that for any a

,
b

,
F

1) F is an Abelian group under +j

2) F 503 is an Abelian group under X

3) The two operations are linked by the distributive law

Definition Field

A field is a set F with 2 binary operations ,
I and X such that for any a

,
b

,
F

1) F is a commutative ring under t and Xi

2) VaeF [03 ,
I anTEF with a xat = 1 = a xa

Field Extensions

Definition Extension
Let FIE be fields

Then F is a subfield of E

E is an extension of F

If BEE , they write F(g) for the smallest subfield of E that contains F and B so in
particular F(p) is an extension of F

.

In general , if ..... But E , define F(B , ..... Br) = F(B.....Br (B)

Note : FIF(B) is an extension

Say F(B) is the result of adjoining to F

Similarly F(B ,. B2 , .... Br) .

If E = F(p) for some then E is a simple extension



Example : QIR
,
QEC

,
REC

IRIR(i)

(notice : R(i) - ; on the otherhand,

a, beR => atbitR(i)
IR(i) field

=> (i) = 4)

Example : QEQ(E) a simple extension

Firstly EEQ(E) and beQ(E) for any be bEQ(E) fields closed under x

Similarly at breQ(E) fields closed under t

Thus the set

# = Sa+br : a
, beQ3[Q(z)

If is a field in its own right using the usual addition and multiplication of complex numbers

For example ,
inverse of atbi is given by

1 x a -br
=Ab =Aba + biz a -br

We have Q IF and RETF
. Since QCE) is the smallest field having this property IQCE) IIF

Hence
Q(z) = 1F = Sa +bra

,
be Q3

Example : QCE
,
5) is also a simple extension

Q( ,
5) =Q( +5)

proof :

E. eQ( ,
5) = E +5eQ( ,

5)

= Q +5) [Q(82 ,
53)

On the otherhand

(8 +5)= (e)+ 3((z)(8) + s(()(5)"

= 28 + 653 + 98 + 35

=I5 + 953



Since ( + 5)EQ(
.
5) we get

(1182 + 953) - 9((2 + 5) eQ( +5) = 2EQ((z + (3)

=>BeQ(+ ) since Ye( +5) ,(2)

Similarly EQ( , 5)

=> Q (2
,
) [Q( +5)

Algebraic elements

Definition Algebraic
Let FC E be an extension of fields and LeE

LEE is algebraic over F when :

and + an-+.. + a
,
x + a = 0

for some Go ,

a, .... NEF. In otherwords a is a root of some feFla)

Definition Trancendental

If I is not the root of any polynomial feFla) with F- coefficients they we sayF is

trancendental over F

Example :

· E algebraic over Q (roots of -2)

· i NOT algebraic over Q transcendental

· A is algebraic over Q(x) (roots of x-1)

· The roots of c+ 4x + 2 are algebrais over Q



3. Quotients
Definition of Ideals

Definition Ideals of a ring
Let R be

any ring and IIR be any
subset

The subset I is an ideal if

i) OEI

ii) a I-acI

iii) a
, bel= a+ be I

iv) acI
,
veR => ar

,
rae I

Principal Ideal

Definition Principal ideal

The ideal

aR = Ear : VERY

is called principal ideal (generated element aeR

Principal Ideal Domain

Definition Principal Ideal Domain

A principal ideal domain (PID) is an integral domain (ID) where every ideal is principal

Theorem

Let F be any field. Then thering

F(x]

is a principal ideal domain

Definition Ideal in polynomial vings over fields
An ideal in Flx] is a set of the form

(f) = 2 fgg( F(x)]
for some fixed polynomial f



Example : c.2eQ() and ideal

( 2) = [p(a
?-2) : peQ[]}

Simplifying -2n + 13 + (-2) ;

-2x + 15 divisible by -2 -
i- 2n + 13 = u(a- 2) + 13 = i 2n + 13 + (n2)=-2) + 13 + (ut2)

= 15 + (a)- 2)

Example :Fz(c) and ideal (a)

There are only 2 cosets

Of (x) and 1+ (x)

suppose we have gt (a) and

·

g has no constant term (namely O sinceF2=S O , 1)

g + (x) = 0 +(x) = (x)

(2) :
f + g + (a) = f =

g+ px

instant term
=> f has no constant term

=> f - (x)

(2) : f((x) => f -g((x)

f =

g + (f -g) =
g + (x)

·

g has a constant term

g + (x) = 1 + (x)



Reminder of Cosets

Let (G
,

+) be any Abelian group ,
HEG subgroup.

Definition Coset

(G
,

+ ) be any Abelian group ,
HEG subgroup. Then

VacG
, a + H = (a +xx H3 - G

is a coset of a relative to H.

In

a + H

"
representative

Properties of Cosets

Lemma

(i) a + H = b +H=> a- beH

(ii) a+ H = b +HE)(a+H)n(b + H) + q

(iii) a + H = H = 0 +H) acH

Proposition

HEG and (G , + ) Abelian HEG normal

Proof :

(htH
,
h = hgg = ghgt VgeG #

Factor Group

Definition Factor Group

Let (G
,

+) be any Abelian group ,
HEG subgroup.

& = [a + H : a + q) = [set of all cosets in G relative to HY

Factor/Quotient group



Factor Rings
Now let R be any ring (R ,+ ) is an Abelian group.

Let IER be any ideal of R . Then

IIR is a subgroup relative to => we have R/I
Consider factor set R/ with binary operation

· Addition : (a+ 1) + (b+ 1) = (a + b)+ I

· Multiplication : (a +1) x (b +1) = (ax b) +I

Proposition
The binary operations +, X

+: (a+ 1) + (b+ 1) = (a + b)+ I

X : (a +1)x(b +1) = (axb) +I

are well-defined

Definition Polynomial ring cosets

(f) -F(a) be an ideal and ge Flc) any polynomial. The set

g + (f) = 2g + hhe(f)]

is called the coset of (f) with representative g

Proposition

(R/1
, +, X) is a ving with +, X defined above

Fundamental Theorem of Homomorphisms for Rings
Theorem

Let R
,
S be any rings and x : R is be a homomorphism

Then KevLER an ideal of R and ImdIS is a subring of S and

& Kera ImC



4. Field Contruction
Proper Ideals

Definition Proper Ideals

Let R be any ring
An ideal of R is proper if IFR

Maximal Ideals

Definition Maximal Ideals

An ideal M of R is maximal if

(i) M is proper , MFR

(ii) For any ideal IER

MEIER => I = M or I= R

Properties of Maximal Ideals

Theorem

Let R be any commutative ving with 1eR. Let M be any ideal of R
. Then

M maximal ES R/M is a field

Now consider R = Fla]
,

F a field and firreducible over F

Let (f) <I < Flu) for an ideal I. Then

I = (n) => (f) = (h)

=> hf

Since firreducible h constant ceF or he of
=> I = (c) or I = (cf)

But (cf) = (f)

On the otherhand
, any polynomial g can be written as a multiple ofa by setting

g = c(ig) => (c) = F(x)



Thus if f is an irreducible polynomial => (f) is maximal

Conversely if (f) is maximal and hlf => (f) -(h) so that by maximality
(h) = (f) or (n) : F(u]

Note that (f) = (n)> h = of for some constant ceF (prove !)

Similarly if h =Flu]> hec some constant (prove !)

Hence firreducible over F.
Thus

ideal (f) is maximal EX f irreducible

Corollary
F(u)/(f) is a field Ef is an irreducible polynomial over F

Example : c+ irreducible over IR R/+ 1) a field .

Constructing fields

Example : a field of order 4

idea : feFla] irreducible over F

=> F-F(x)/(f) new field

start with2 = 50 ,
13 +, X mod 2 and

E + x + 1 Ez(x) irreducible over2 02+ 0 + 1 = 1

no roots
=> Fz(x) (+ x + 1) is a field 1 + 1 + 1 = 1

with elements : [g + (a+ x + 17 : geFz(x)] where

g + (u+ x + 1) = g(a+ x + 1) + v + (x+ x + 1)

=v+ (a+ x + 1)

= (an + b) + (x+ x + 1) (*)

Notation: (a = 1
,

b =0)u + (a+ x +1)

Also (a = 0) b +(+ x + 1) is written as belFz



Then

(x) = (a + (x+ x + 1))(x + (i+ x + 1)) + (b+ (a+ x + 1))

= ax + b

#4 = 50
,
1

,
2

,
2 + 13 so that e .g

(x + 1)= ( + 1)(x + 1) = 2+ x +2 + 1

= 2 + 1

Magic algebraic rule : af + (f) = (f)

(n + x + 1) + (x+x + 1) = (n+ x + 1)

=> 2 + 2 + 1 = 0

=> 2= 2 + 1

Carrying on : 2+ 1 = x+ 1 + 1 = 2

Drawing table

#4 j 1 2x+

J j 00 0

1 01 X x+ 1

L 0xx+1 I

x+ 10 a+ 1 IX

General construction of fields : field with pd elements, p prime ,
del

start with Ipla) and fepa) irreducible of degreed .

Let < = c + (f) and replace #p with its isomorphic copy inFp(x)/(f) .

This gives ip(x)/(f) = Sad,* . . + do die Fph



Example : Field with 81 elements

=a = 34 = (322

Step 1 : Construct Iz = Fg

82 + 1 = 1

f = c + 1 R + 1 = 2 no roots

22+ 1 = 2

& quadratic irred over Is

=> #q = Sa + bx : a
,
bezY with rule+ 1 = 0== 2

= 20
,

1
,

2
,
2

,
x + 1

,
2 + 2

, 2x
,

2x + 1
,
2x + 2)

Step2 : Constructq=z,

(q(y] g =y + y + 2

Check has no roots in Fa :

g(a + 1) = (a + 1) + (2 + 1) +2

= x + 1

similarly for other 8

1Fz = [A + BB : A
, BE lFq3 and 32+ p + 2 = 0 = 3 = 2p + 2x

=(a + bx + c + dap : a
,

b
,

c
, de Fz] and 2= 2

, p= 2p +2

Example : Field of order 729

729 = 36 = (343

1) Consider the polynomial
f = c + x + 2 = (j(u]

Has no roots : = 02+ O + 2 = 2

&· 1 + 1 + 2 = 1 = f is irreducible

· 22 + 2+ 2 = 2

=> #q=z(x]/(x+ x + 2)
.

Let < = x + (x + x + 2) = #q = Eax + b : a
, be 1z] with rule 2 = 2 + 1



Now let X be a new variable and consider the polynomials IGIX] over Fa

In this new variable, consider polynomial

g = x+ (2 + 1)x + 1



5. Constructibility
Constructing in C

There are 2 constructions in D. For Z
,
we

z

·
W

=
↳

line through z
,
w circle centered at z passing through w

Definition Constructible

A zeC constructible EXA a sequence

0, 1
,

2
,

Z
,, Zz , .... Z = Z

Each Ej obtained from earlier numbers in the sequence in one of the following 3 ways

zuzq ) D·
↳

(i) (ii) (iii)

with p, g .
v

.
s < j

Given O
,
1

,
i for free so they are indisputably constructible. The reasoning is if you stand on a

plane without co-ordinates , then your position can be taken as O.

Declare a direction to be the real axis and a distance along it to be 1
.

Construct a perpendicular bisector of segment - I to 1 and then measure a unit distance along
to get i

We have & other constructions



1) Dropping a perpendicular from a point to a line

=
perpendicular bisector of AB

P. P.
-

& %

2) bisect angles

·j- ⑧

3) drawing a perpendicular bisector

~Af

.



4) Draw a line through a point that is parallel to some other line .

1 P 2 P

·

5 perpendicular fromPtos·
g

line I

3 &
P P

·
R
-

R

perpendicularbisector of AB

B

Notation
WriteE for the set of constructible numbers .

Example : Constructing 3

bisector of

SiS
,
Sa ↓ the right angle

Constructing 3/4

constructingtT
1) bisect 10 ,

1)

2) bisect I' , 17

2 1

3/4



Theorem

G is a subfield of C

Proof :

Show first that GMR are a subfield of I ,
i. e.

a
, be ER atb, a

,
ab and= ER

· closed under - :

it
· closed under+:

...ii
· closed under X :

ai

·
~

S

#
1



R

x + a = b + 1

A

parallel , => x = ab
a

L

1 b

· closed under

⑨

. ai
+ ·

?

·
Now showing & subfield of D : ztw

,
-z

,
zw.z are constructible

First : zeC constructible > Re(z) and Im(z) constructible

Im(z)i
⑨

Z
i Im(z)

· ·
Z

[ &

↑
Re(z) Ini(z)



second : if z
,
we then

z+ w = (Re(z) + Re(w)) + (Im(z) + [m(w)) ;

zw = (Re(z)Re(w) - [m(z)[m(w)) + (Re(z) Im (w) + Im(z)Re(w))i

= Rezmz
So that for example if z ,

we Le

=> Re(z)
,
Re(w)

,
Im(z)

, Im(w) eGMIR

=> Re(z) + Re(w)
,
[m(z) + Im (w) - GMR

=> Re(z+ w)
, [m(z+ w) EnIR

=> ztwEll

Similar for zw
,

-z
, Le *



6. Vector Spaces and Degrees
Definition of a Vector Space

Definition Vector Space

LetIf be a field (usually IR or 4)
.

A vector space over If is a set V together with binary
operations

rector addition scalar multiplication
vxr U FxV >

(u, v) , <(n + v) ( , v) , av

(AI) commutativity over addition

n+ v = V +un ,
veV

(A2) associativity over addition

u + (v + w) = (n + v) +wVu ,
v ,we

(A3) & vector

# DEV such that Otv = r Eve

(A4) Inverse

Given any
veV

,
A -veV with (-r) + v = 0

(M1) Distributivity
x(u + v) = au + Bu Va,

u ,
vEV

(M2) Scalar Multiplication

alpv) = (p)v Fa
, BEF and ver

(M3) Distributivity
( + p)v = xV + BV Va

, BEIF ,
ver

(M4) Multiplicative Identity
Iv = v EveU (where IEFF is the usual 1)

- A vector is an element of a vector space

· Given a vector space V over a field If, any def is a scalar



Note

i) Being binary operation implies V is closed under linear combination

Vu
,
veIF and any deff , utveU

,
drev

ii) Axioms Al-A4 together with binary operation addition is an abelian group
Linear Combination

Definition Linear Combination

Given vectors
Y, .... YqEV and Scalars G

, ...dqEF,
the sum

5, + .... dqq=di;
is called the linear combination

Linear Dependance/Independence

Definition Linear dependence
A collection of vectors @ = /X, . .

., Yqb V is linearly dependant
it = (x , . .

.,(g) 9410, ..., 03 s . t

6, + .. . +qq = G

Otherwise
,

we say YI
, ..., Vg are linearly independant

Definition Linear independence

Y
, ..., Yq are linearly independent if

6
,
k + .. . +q(a = 0 = 4 = 0....., dq= 0



Spans

Definition Span

Let &CV be a non-empty collection of rectors.

The span of G denoted

Sp(e)
is the set of all linear combination of E

Sp(G) = [utFu = 2
, ki + .... + [In for some LieF,

viES]

By convention
,

sp(q) = 28]

Basis

Definition Basis

Let SEV be a non-trivial 3503 subspace of V,

A collection B = SV1, ..., Va] &S forms a basis if

2) V, . . ., Eq is linearly independent
ii) sp(1 , ..., (q) = S

By definition,

basis of 50% is &

Dimensions

Definition Dimensions

For any subspace S-V ,
we define dimension of s by

dim(s) = #(basis of 5) cardinality



Vector Space homomorphism
Vector space homomorphism is a linear map

Definition Linear Maps

Let V
,
W be vector spaces over the same field IF.

A map L : V -> W is called linear map if

((xu + By) = x((u) + pL(X) Va ,Bel, Unive

In abstract algebra ,
linear maps are referred to as vector space homomorphism ,

since they
like other homomorphisms , they are structure - preserving maps.

Therefore we denote the set of all linear maps from V to W by
Hom(v

,
w)

Example : V = D is a vector space over FFR

"vectors" : a tbie C (b)

"scalars" ceR
EF

"rectort" : (a + bi) + (c +di)(b) + (a)

"scalarx" : catbil c( %)
basis : [7

,
i ? (6) . (i)

=> D a 2-dimensional vector space over IR

Example : let FIE be an extension of fields

Then E is a vector space over F

"vectors" : elements of E

"scalars" : elements of F

"Vectors+: I in E
"

scalar multiplication". product of an element of F with an element of E inside E



Degree of an extension

Definition Degree
Let FEE be an extension of fields

Consider E as a vector space over F and define degree of the extension to be the dimension
of this vector space denoted

IE : F]

Call FCE a finite extension if the degree is finite

Recall : F a field
Flu] = polynomials with F-coefficients

f( F(x)

ideal :<f) = Eth : heF(a]}

coset :

g +(f) = (g + th : he F(a)]

Properties :

(i) g + (+) = (f) Es g((t)
(ii) gf + (f) = (f)

F(x)/(f) = Call cosets of (f)}

= (g + (f) : ge F(x)

· Addition: (g1 + (f)) + (92 + (f)) = (g ,
+gz)+ (f)

· Multiplication (91+ (f) (gz +(+)) = (g192+ (f)

F(u)/(f) is a field Ef is an irreducible polynomial over F



Finally
,
the cosets

a + (f)

where aeF (i . e . g + (f) with g a constant polynomial).

Then [a + (f) : aEFY is a "copy" of the original field F sitting inside FlaT/Lf)
I by copy,

we mean isomorphic
(a + (f))(b + (f)) = ab+ (f)

(a + (f)) + (b + (f)) = (a+ b) + (f)

i

. e. have (writing F as well as this other version of F

F- F(x]/(f)

an extension of fields when f irreducible over F

Theorem

If f is irreducible over F then the extension

F - F(x]/(f)

has degree equal to degree of f

Proof :

Replace F by its isomorphic copy [a + (f) : a + <f)}

claim: B = Sl + (f)
,

x + (f)
, ....,
d+ (f)3 where d=deg(f) a basis

Span : g+(f) = ((f) degrsdegf
= v + 4+)

= (a + a
,
x + .. + ag.,

ad-) + (f)

= (a+ (f))(1 + (f)) + (a
,
+(f))(u + (f)) + .. . + (ad -+ (f))(u*+ (f)

an F-linear combination of B

Linear independence :

(ao + (f))(1 + (f)) +.... + (ad
- 1

+ (f))(ud+
+ ( + 7) = 0 + (f)

=> (a0 + a
,
a + .. . + aa ,

xd+

) + (f) = (f)



=> ap + .. . + ad.,
xd e(f)

Everything in (f) has degree I & except O

=> a+ .. . + ad- zd = 0

=> a = 0
, a

,
= 0, ... , ad = 0

=> do + (f). ..., ad+ (f) are O in Fla]/<f)
*

simple extensions

Theorem Simple extensions

Let FEE and LEE algebraic over F
. Then

(1) A a unique feFla) that is monic ,
irreducible over F and has a as a root

(2) F(x) = F(u]/(f)

(3) F(x) = 200 + a
,
2 + a22 + ... + aga90 ,

a ....., 99.F3 and dodeg(f) .

In particular B = 21
, 2, ..., 293 is a basis for F(G) over F

Definition Minimum Polynomial
The polynomial in (1) is called the minimum polynomial of L over F

Example : F = Q
,

L=

Then f = c
*-zeQ(a)

-monic

- < a root

- irreducible over Q Eisenstein

=> f is the minimum polynomial of S over Q

=> Q(() = (a
0

+ a
,
38 + a

,
(2) + .. . + a4(2)44 ,

[Q(25) : Q) = 3

Example : f = 2+ 1 IR(a)

Then f has a root ieD is monic ,
irreducible over IR

=> f minimal polynomial of < over R

=> R(i) = IRIa]/ <a+ 1)



-
where RIx]/(i+ 1) = Eg + (n+ 1) : geRia]Y where g + (n+ 1) = q(a+ 1) +r + (x+ 1)

= v + (x+ 1)

= (a + bx) + (a + 1)
e .g

: (n+ (n+ 1))2 = (x + (x+ 1))(u +(u+ 1)

=x + (u+ 1)

=((x+ 1) - 1 + (u2+ 1) = - 1 + (u+ 1)

Example W = cos2 + isin2n (p prime

F = Q

·

W

guess #I for min polynomial :

1 -1 monic
1 EQ[] v

w is a root ~

irreducible over Q X

But uP- 1 = (x - 1) (1 + x + x +... + xP-)

guess #2 : I ata .. taP eQ)

(pth cyclotonic polynomial monic

wa root
=> IQ(w) : Q) =

p
- 1

irreducible prob sheet &, Q2

The Tower Law

Theorem The tower law

Consider a tower of extensions
F E-L

where E has finite degree over F and L has finite degree over E
, then

[L : F) = [L : ESTE : F]

(write proof later)



Example : What is the degree of :

Q = Q(E ,
i)

i
. e. QQ(E) Q(38 ,

i)
FE L

(i) QQ(3(2) is similar to the above with -2 the min poly of s over Q

=> [Q(E) : Q) = 3

(and 57
,
E

,

(3) is a basis

(ii) Now let IF = Q(3E)
,

so that the second extension is

IF - If(i)
monic

and where the minimum polynomial of i over If is set
i as a root

=>ct1 is the min poly
irreducible over If as i

,-i #F

IQ(Ei)
, Q(82)] = 2 basis [1

,
i} for F(i) over #F

Tower law = IQ(E
,
i) : Q) = 3 x2 = 6

proof => [1 ,
E

,

(3)
,
i, i ,

(8) 3 a basis

(prove basis later)



7. Constructibility II
Theorem

A zcK is constructible

#

I a sequence of extensions
:

Q = Kok , c ... ERn (* )

such that Q(z) = kn (Ezekn) and Ki is an extension of Ki of degree 12

Corollary
ze constructible => degree of the extension QEQ(2) is a power of 2

Proof :

By theorem . ze kn for the sequence (*) hence

(kn : Q) = [KniQ(z)JIQ(z) : Q) by tower law

where [RniQ]nknlkn
: kn-2)...

= 2

Thus [Q(z) : Q) divides 2

=> [Q(z) : Q) = 2" for some n
*

Moral : Tells us when ZeD cannot be constructed
-

Example Constructing regular n-gons
Exercise : an n-gon can be constructed iff

w = COSI + isin In can be constructed
·

W

For n= p prime ,
a p-gon constructible 1

if w =coSI + is in In constructible 1

where IQ(w) : Q) = p-1



Thus for p-gon to be constructible

p - 1 = 2 => p =2 + 1

Aside :

modd then

(x+ 1) = (x + 1)(um- am
- 2

+... - x + 1)

so that if n= mk
, m odd

,

2 + 1 = (24m+ 1

= (2 + 1))(24)"... -2+ 1) not prime

HenceIt to be prime, a can't have add divisors= 2

i
. e. if p-gon

constructible

p = 2 +

Je constructible => IQ(s) :Q) = ph
"

find minimal polynomial of deg = 2

Definition

An angle O is constructible iff you can construct

(0

We know angles can always be bisected

↑ "

Finally : angle O constructible iff cost is constructible

10

- i



Can angles always be trisected ?

Eg :
yes for O =T

o
S ·

But O =

I cannot be
trisected EX cannot be constructed

Exercise : cos3y = 4cos3y-ScosY (compute (cos + isinG) and De Moivre's Thm) (x)

Show cost
cannot be constructed by computing the degree of extension QQ(cos/9)

Have by (* ) that

COST = 4c0S-3COSI = Bcos-G
↳

Let u = 2
cost so that 2cost a root

i -3u - 1 = 0 monic

EQ(x)

Applying reduction test with p
=2 irreducible

=> thus -Su-1 is the min polynomial of 2cos (A) over Q

=> IQ(2csA) : Q) = 3

(s)= Q(csn(z)
=> IQ(cos #/9) : Q) = 3 NOT a power of 2



8. Splitting Fields
Definition Splits

If feF(x) and FIE an extension then f splits in E when

f = deg(t)a - ai)
i = 1

where aie E

By Corollary to Kronecker's theorem
I an extension of F that contains that contains all the roots asa ... an In = degfl of f

If <
. 22 , ..; [dEK roots off then E = F (x .... i (d)

Splitting field

Definition

feF(x] then the field
F(a ,, az , ... an)[E

the extension containing all roots of f is called the splitting field of f over F

Example :f I has splitting field
Q(i

,
-i) = Q(i) over Q

Has splitting field RCi) = D over IR



9. Groups Overview
Groups

- Subgroups , Lagrange's theorem

Cauchy's thm
-

Subgroup Lattice L(G)



10. Galois Groups
Automorphisms/symmetries
Definition
A symmetry or automorphism of a fieldI is a map

0 : F >F

that is a bijection and

o(a + b) = o(a) + o(b)

o(ab) = o(a)o(b)

i . e. an isomorphism to itself.

Example : Complex conjugation
0 : D -> C

z1Z

z , + zz = z ,
+ zz

z , zz = E
, z2

reflect

~ automorphism

Example : FEC

Then if MeQ

·



= (o(i) +... + o(,)) . 1

o(1) +... + o(1)

= 1+... + 1 .
1

1 + .. . + 1

= M

N

Galois Groups

Definition

If FCE are fields , they write

Gal(E/F)

for the automorphism of E that fix F pointwise
i

. e.

(a) = a VaeF

Exercise:Gaisa group under composition of automorphism with the
identite

o(a) = a VacE

written "id" and o'the usual inverse map

Gal(E/F) the Galois group of E over F

Example : F = Q

Herebasi
a

Tower 1,
E

,
i, Y basis forQ ,

i) over

=>Q(
,
i) =Sa + biz + ci +di : a

,
b

,
c ,

de Q3

Then if ocGal(Q(E , i)/Q)

o(a + biz + ci + drzi) = o(a)o() + o(b)o((z) + o(c)(i) + o(d)o((zi)

= a + bo(z) + co(i) + do(f)(i) z elements of Gal(Q(Fl/Q)
fixes rationals , Q by defn

=> o completely determined by(1) and oil



This is a general fact .

If FIF, ...x =E
, they GalCE/F) is completely determined by
o(x)

,
. .

., o(da)

For if &B,., Pn3 a basis for E over F
, then o is completely determined by its effect on Bi

The proof of tower law gives

Bi=iii.
a product of dj's so that (Bil = o (b ,)to2.. is in turn determined by olaj's

Example : Sometimes GalCE/F) can be computed by brute force

Consider QQ (w) w = -+
where w= 1 Wi

Find min polynomial of w over Q 1

Guess 1 : x-1 = (x - 1) (I + x +x) not irreducible

Guess 2 : I + a +c

=> Q(w) = Ea + bw : a
,
beQ and w= -I -

w

If &Gal(Q(w) Q) then o determined by o(w) where

o(w) = a + bw where a , bEQ

Consider ow'

(i) o(w) = o(1) =1

(ii) o(w) = o(w)"= (a + bw)
= a + 3abw + 3a(bw) + (bw)

= a + 3abw + 3ab) - 1 - w) + b

= (a + b - 3ab) + (3ab-3abw

Equate 1 and w parts

a + b - 3ab2= 1

Sb-sab = 0 = Sab(a- b) = 0



=> a = 0 or b = 0 or a = b

Hence a = 0 = b= 1 = b=

b = 0 = a= 1 = a = 1

a = b = a = - 1 = a = - b

=> ow) = w ,
objection(w) = 1 -w

=> Gal(Q(w)(Q) = Sid
,
o(w) = - 1 - w = w]

↓
of G

Extension Theorem

Theorem

Let F and I be fields

[ : F > k an isomorphism of fields
Also let a algebraic over F with minimum polynomial feFal

Finally let E: Fla] c ka) be the map

* ([aixi) = [Tailai

Then I an isomorphism 0 :F() K(p) with

o(d =p p is a root of
*

+

For us : let F = K
.

C is the identity map

Chence =
*

is the identity tool .
This gives

So if x is algebraic over F with min polynomial feFa] , they I an isomorphism

0 : F(a) < F(B) s .
+
E B is a root of fo(x) = 3

If we also assume that BeF(a) then you can show that (Ex) F(B) = F(a)
.



This gives

Corollary
If x algebraic over F with minimum polynomial f , theyI : F(x) FCC) an isomorphism
(i . e

. an automorphism) with

o( =p> p is a root off that is contained in F(a)

Moral : Automorphisms of F(G) permute the roots off ,
the min poly of2

Example : w = 1
. Finding Gal(Q(w)/Q)

+
Min poly of w over Q is

⑨ ·

I

1 + x +x

w= with roots w and we w

We get of Gal(Q(w) Q) iff o (w) is one of these roots that is in Q (w)

This gives o(w) = w or wh

As Q(w) = Sa + bw : a
, be Q3

,
thus

· if (w) = w => da + bw) = a + bw
,

i

. e. G id

· if (w) = w= => o(a + bw) = a + bi

Gal(Q(w)/Q) = Sid
,
o ?

Example : <= 3EER
.

What is Gal(Q()
,
Q)

Min poly over Q is

-2 Eisenstein

with roots L
,

aw
,
zw"where

LW

w = - + Bi L

-w

But <W
,
LwEDR but Q(a) -R so that

aw
, <w2Q(x)



Thus aoeGal(Q(a)/Q) can only send a to a

As Q(x) = [a + bx +c : a
,

b
,
ceQ} this gives sid

Gal(Q(a)(Q) = Sid 3

Order of Galois group

Corollary Order Corollary
Let feFla] and E the splitting field of f over F

.

Moreover the roofs of are distinct. Then

Gal(ElF) = [E : F]

This formula : E andF are fields , hence rings and E is a vector space over F i also GalCE/F
is a group of automorphisms

Example : Gal(Q() Q)

x =3

On the otherhand , Q-Q(x) is an extension of degree = degla- 2)

i . e
.
[Q(x) :Q) = 3

The splitting field of -2 is Q(c ,
<w ,<w) + Q()

Proposition

Let E be the splitting field over F of a polynomial with distinct roots. Suppose also that

E = F(d , , .... Xm) for some a
, ...MEE

such that
[E : F) =

,

(F(ai) : F)

Then 1 a ocGal(E/F) with o(xi) = B;>B i is a root of the minimum polynomial of Li over F

Example : From section O
,

we computed automorphisms of Q ,
w in an adhoo way .

x =3
,

w = -+

Compute Gal(Q( ,w)Q)

(i) Claim QCC ,
w) is the splitting field of ce-2 as the roots of this are,

aw
,
xw

Then
Q (x , xw , xw) = Q(x , w)



(ii) Roots of ce-2 are distinct

(iii)

Compute Qw
(x) x has min poly 2 over Q

=> IQ(x) : Q) = 3 Basis : [1
, 2, 223

(**) W has min poly 1 + x+ over Q (a)

= [Q(
,

w) : Q(x)] = 2 Basis : [1
, w]

=> [Q(x ,
w) : Q) = 2x3 = 6 = (Ga)(Q(,)/Q)

47 ,
2

,
a

, w
,

aw
, 2 wh

Further by proposition above
,

we can senda to any of a ,
xw

,
tw and wo any of w ,

wh and

get an automorphism.

Following this through with the vertices of a triangle gives 3 automorphisms withw mapped to
itself and another 3 with w mapped to wh

⑳ ·& i
as

⑨ Las
21XW

zw
?

21X WI > W Wi < w

Ja W 1 > W

o

XT
10)

Lasi21XW

w ++w zw
?

w -> w

ja



11. Fundamental Theorem of Galois Theory
We know that a complex number I is constructible if I a sequence of fields

Q k
, [k2 = ... km

such that QCS) Km and each Ki is a degree 2 extension of Ki i . e. In ] = 2

To use this
,

we need to understand all the fields sandwiched between Q and QCS)

The Galois correspondence gives us this understanding
Definition Intermediate field

Let FCE be an extension of fields and FEKSE

call such a k an intermediate field

The lattice of intermediate fields consist of all such K s .t K
, EK , then draw

K2

R
,

i . e .

E

FIk
, [RzCE

kz

Ri

F

compare with lattice of subgroups in Lecture #IS)

Notation: Write LCE/F) for this lattice



Theorem

If FCE with

G =Gal(E/F)

and LCG) the lattice of all subgroups of G and LCE/F) the lattice of intermediate fields

Then

(i) I a subgroup of G-GalCE/F) then
EH = EXCE : o(x) = xVoH]

is an intermediate field called the fixed field of H

(ii) if K is an intermediate field then Gal(E/k) is a subgroup of
G = Ga)(E/F)

(iii) The maps IH EF andF GalCEK) are mutual inverses hence bijections

[ : 2(G) > 'I(E/F) :

that reverse order
i

.e.

H, Hz
E

, E* Et

R22K ,
, Gal(E/k

,) = GalCE/k2

(iv) ThedegreeofEE is equal to the order of H or the degree ofE is all

schematically
2(G)

E G

2(E/F) I : Y <EY
[

Hz = Gal(E/Rz)
k

,
= Et Galois

correspondence
>

q : X + Gal(E(X) H
,

= Gal(E/k
,
)

kz = E
+z

IE*: E
+

2) = n=Hz : Hil
F Sid?

why upside down? If H,e LCG) then ET'SXEloCDX VEH

And H, He they Et are these elements fixed by all theeHz



Thus E*2 is the result of imposing more conditions on EP2 , hence smaller

Example : F = Q

E =Q( ,-ti)
w =

Remember 22 has roots
W

L

xw2

Consider Gal(Q( ,
w) Q) ; suppose that o, EGal(Q( ,

w)/Q) such that

o(d) = aw o (w) = w

<(a) = x i (w) = w

=> Sid
, 0 ,

0? 5
.

02
,

83 (*) are also in Gal(Q( ,w)/Q)

id o 8 T Ot E

< < aw zo aw?
WWW W W

&
w
?

w
?

↑

o2() = o(o(x)

= okw) = o(x)o(w) = aw . w = xw

Thus (*) gives 6 distinct elements of Gal(Q( ,w)/Q)

Moreover from order corollary , we have

Gal(Q(c ,w)(Q) = [Q( ,
w) : Q)

Recall : Q(a ,
w) =Q(

,
<w,w2) the splitting field of -2. .

Also

I
basis [1 ,

wh

=>[1
,
2

,
2

,
w

,
<w,wY basis for Q( , w) over Q

Thus Gal(Q(x ,w)/Q) = Sid
,
0 ,

82
,

5
,

05 ,
03



What is the subgroup lattice of LCG) !

G =Gal(Q(x ,w)/Q)

:
These give geometric symmetries
This gives our first picture

2(Q(
,
w)

,
Q) 2(Gal(Q(x ,w)/Q)

Q( , w) Gal(Q(x
,w))2

[G : H] =3 Sid
,

0
,
833%) I :Y EY in/ on

F = Q(x) F2 > He did
,
oz]-ia]

fixed
in%%

Sid

Find F
,

= fixed field of H = did
,
53

= Q (a ,
w(did,3

A typical element of Qa ,
w) is

a = a + a ,2 +az + azw + aw +aga, ...ag

We want thosea s . t id(a) = x and ((x) = x by defn of fixed field of H

T(a) =

a + a
,
2 + a22 + aw + a4dw + as

(1 + w + w = 0 since min poly of wis f = 1 + x + a)

= ap + a
,
2 + a2x + az(- 1 - w) + apx)- 1 - w) + ag2( 1 -w)

= (a - az) + (a
,

-ap)x + (az - as)j - aga -

apa
- as

For <(a) = x
, equate coefficients



90 - az =agaj = ag

&a,- a4 = a, a = a, -asa = ag = a) = a = 0

az- az = A2 az = a2 - Aj = Aj

Thus <(a) =x(> x = a. + a
, x + az

i
. e. xeQ(x)

i . e FiCQ(x)

ButI fixes Q and <(a)= => fixes Q(a)

=> Q() = F
,

Y
since Q(a) smallest field

=> F
,
= Q(c)



11. (Not) Solving Equations 
You know : as batc has roots -bac

2a

can you do this in general ???

Radical Extension

Definition

A extension QE is a radical when I a sequence of simple extensions

⑭[Q(x ,
) [Q( ,, (2) = ...Q( ,...., xx) = E

where eachXi is st LeQ( , , ..., xi-1) for some power mie 20

i. e.is anmith root of an element of Q ....,mit

Example :

QQ()EQ(. ) =Q(, ,)

Definition Solvable by radicals
A polynomial is solvable by radicals iff its splitting field is contained in some radical extension

Example :
any
a batcQa] is solvable by radicals as its splitting field is contained in

Qfac

a radical extension.

Similarly for cubics , quarties

Definition
The Galois group of feQa] is the Galois group

Gal(E/Q)

where E is the splitting field of E



Theoremy Galois

feQ[n] is solvable by radicals

#
The Galois group of f is soluble

*

Sn NOT soluble for n 23

Example : C-4atC not solvable by radicals

Li
. e .
there is no formula for the roots of ze-4x + 2)

For let
E =Q(

,, 42 , <g , (4 .
(a)

be the splitting field of with 2 . 22 . .... Is the roots. Then

: - +Ci + 2 = 0

If OeGal(E/Q) then

ok? - 4ci +2) = v(0) => o(xi)" - 40(xi) + 2 = 0

=> oki) is also a root of f

=> GalCE/Q) permutes the roots of f

=> Gal CE/Q) is isomorphio to a subgroup of So

Moreover QQ( , ) =Q
, ...<) =E=

where the min poly of 2
, over Q is -4x + 2

Cirred by Eisenstein)

=> IQ(i) : Q) : 3

=> 5 divides [E : Q)

We also know: splitting field
Gal(E/Q) = LE : Q]

Thus 5 divides GalCE/Q)Ihy Gal(E/Q) has subgroup did ,
6 , 02,83,

04 of order

Thus I rcGal(E(Q) of form O = (a
,

b
,

c
,
d

,
e) where a

,
b

, c d
,
e 2x

, 42
. 25 . 64 , 293

Also complex conjugationI : ZZ is an automorphism of K and this restricted to E to

give an element of GalCE/Q



In factf looks like

i. e. three roots of are real hence two are complex
conjugates

~ Thus I is a permutation of (b bul

(cf :

every element of In can be written in terms gota
Similarly every element of Ss can be written in terms of O andE GalCE/QES5

insoluble

=> f not solvable by
radicals


